Academics discover variation in circadian clock protein in fruit flies

Posted by er134 at Jan 24, 2014 10:25 PM |
University of Leicester study into genetic adaptation in fruit flies to be published in academic journal

Issued by University of Leicester Press Office on 24 January 2014

Contact pressoffice@le.ac.uk to request images

The circadian clock is a molecular network that generates daily rhythms, and is present in both plants and animals.

A University of Leicester research team led by Dr Eran Tauber has studied genetic variation in circadian clock genes in wild populations of the fruit fly, Drosophila melanogaster – and has discovered that their genes have developed different genetic variations that are functionally important.

The paper, entitled ‘Molecular evolution of a pervasive natural amino-acid substitution in Drosophila cryptochrome’, has been published in PLOS ONE, a peer-reviewed international online publication.

The research focuses on examining a protein called Cryptochrome (CRY), a blue light photoreceptor which synchronises the circadian clock of the fruit fly with the environmental light-dark cycle. CRY is involved in circadian clock functioning in both plants and animals, including humans.

Adaptive variations have resulted in two versions of the CRY protein existing in fruit flies, both with a different amino acid present – these amino acids affect the circadian clock of the fruit fly.

Dr Tauber said: “The fruit-fly has been a major model organism in the study of the circadian clock, and our collection of strains from various wild populations allow us to identify changes in the genes that serve as molecular adaptations of populations to their local environments.

“We have analysed the sequence of this genes in flies from different European populations and identified many variations. One of these variations involves a single DNA base change resulting in two versions of the protein, each with a different amino acid.”

Bioinformatic analysis of the protein structure was carried out by Dr Ralf Schmid from the University of Leicester’s Department of Biochemistry, and suggests that this single mutation has a profound effect on the protein structure of the fruit fly.

Dr Mirko Pegoraro, a researcher from the University of Leicester, said: “The fact that the two versions of the protein are present in similar proportions in all the fruit fly populations that we sampled suggests that this variation is functionally important in the species and is actively maintained by natural selection.

“We have tested the behaviour of the flies that express the different CRY proteins and found some interesting and significant differences in their activity pattern during the day, and adult emergence from their pupae the fact that a single amino acid change can result in a different behaviour is an extraordinary discovery.”

The study generated large fly populations with different frequencies of the two CRY variants. The team monitored the dynamics of the variants for nearly a year - about 20 fly generations.

The frequency of the genetic variants became similar in a controlled research environment, simulating the frequencies observed in the wild. Using this kind of experimental evolution allowed the team to demonstrate that this variation is actively maintained by the species, although the exact mechanism is yet to be identified.

The research was carried for nearly six years and was funded by grants from the Natural Environment Research Council (NERC) and the Biotechnology and Biological Sciences Research Council (BBSRC), to Dr Eran Tauber and Prof. Bambos Kyriacou at the Department of Genetics.

The research will be available on PLOS ONE from January 24 at 10:00pm GMT. Link to live article http://dx.plos.org/10.1371/journal.pone.0086483,

Link to the Tauber Research lab http://www.tinyurl.com/TauberLab

ENDS

Notes to editors:

For more information, please contact Dr Eran Tauber at: et22@leicester.ac.uk

NERC is the largest funder of environmental science in the UK. We invest £330m in cutting-edge research, training and knowledge transfer in the environmental sciences. Our scientists study and monitor the whole planet, from pole to pole, and from the deep Earth and oceans to the edge of space. We address and respond to critical issues such as environmental hazards, resource security and environmental change. Through collaboration with other science disciplines, with UK business and with policy-makers, we make sure our knowledge and skills support sustainable economic growth and public wellbeing - reducing risks to health, infrastructure, supply chains and our changing environment.

 

The Biotechnology and Biological Sciences Research Council (BBSRC) invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond.

Funded by Government, and with an annual budget of around £467M (2012-2013), we support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals.

For more information about BBSRC, our science and our impact see: http://www.bbsrc.ac.uk

For more information about BBSRC strategically funded institutes see: http://www.bbsrc.ac.uk/institutes

Share this page: