The Practical Class

Demonstrators need to consider the following:

- Arrive on time;
- Liaise closely with the technician(s) and any other support staff;
- Check and help with the setting-up of the equipment, specimens, etc.;
- Take attendance if that is required;
- Start the practical with clear instructions to the whole group on learning objectives, the planned activities, the procedure for cleaning up, and any issues of safety which particularly need to be drawn to their attention;
- Give clear guidelines about any work to be handed in or assessed;
- Allow time for questions at the outset to clear up misunderstandings;
- Monitor student progress and respond quickly to raised hands;
- Deal with problems arising;
- Be pro-active; try to anticipate problems and deal with little local difficulties before they grow into larger and wider ones;
- Keep your own notes of who has done what – especially important if there are several experiments or activities happening at once;
- Sum up at the end – or better still invite students to collaborate in summing up;
- Set follow-up tasks if appropriate, e.g. reading or preparation for next time;
- Ensure students leave the laboratory or field in good order and equipment safe.

(Allison, 1995, p. 44)
Potential Challenging Situations

<table>
<thead>
<tr>
<th>The practical exercise fails or goes wrong</th>
<th>Resist the urge to panic if things go wrong; it happens to everyone and you can no doubt recall mishaps when you were a student. Try to explore with a group or student why things have failed; check instructions have been followed; have you forgotten to mention a crucial point?; find out if it is an isolated incident or whether others are having trouble. If there is a problem with the whole class then the staff member in charge should be called in to review the situation. It could even by an opportunity to engage in some problem solving. If the equipment has broken down or failed you should call the technician and not try to mend it yourself. In the meantime the students affected could join with another group, if appropriate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A student is not pulling his/her weight in a group</td>
<td>Talk to the whole group about what they are working on. Try to involve everyone in the discussion and ask the less-than-involved students for their views and to outline their part in the proceedings. It may be necessary to allocate changed tasks within the group to engage the students with the work. Make a personal note that the students may have to be regrouped next session, if the problem persists.</td>
</tr>
<tr>
<td>Arguments between students</td>
<td>It is best not to get drawn into such arguments; rather be alert to the possibilities of tensions developing and move swiftly to defuse things. Focusing on the task in hand rather than on the dispute and trying to get the students to re-engage with the material with comments to encourage or direct them should help.</td>
</tr>
<tr>
<td>Disruptive students</td>
<td>This is likely to happen only rarely, but if it does you must move quickly and firmly to deal with the situation. Student who have given up because the task is too difficult or because they have finished early and are restless, or for any other reason may become disruptive. Peer pressure is powerful and a single disruptive student may distract a number of others. They may be laboratory rules regarding conferring, moving around, etc. to prevent any particular student’s behaviour becoming a problem and a swift reminder of these should be all that is necessary. However, if it is not, then it is the responsibility of the staff member on duty to sort it out. If safety is compromised then you must clearly act straight away to stop the student’s behaviour. The safety of the whole class is of prime importance and if necessary the disruptive student should be required to leave and the staff in charge told.</td>
</tr>
</tbody>
</table>
An accident occurs

Think through in the planning stages for a session what you would do if an accident happens, whether in the laboratory or a field class. It is better to have thought this through rather than having to react on impulse and you will be alert to possible hazards for each exercise. Students will expect you to know what to do. The importance of knowing the relevant health and safety requirements is paramount. You have to deal with an accident straightaway and call in the first-aider if necessary and/or evacuate the laboratory. All accidents need to be recorded in the accident book and this is probably held with the technician.

(Allison, 1995, p. 46)

Reference