Daniel Panne

Structural biology of signal transduction and epigenetic gene regulation

Daniel Panne 2.0

Research Summary

Our research has focused on understanding how signalling pathways control gene expression by epigenetic modulation of chromatin structure. One of the best-understood model systems for metazoan gene regulation is found in the innate immune system, which is crucial to limit pathogen infections: Several groups of pattern recognition receptors induce different signalling pathways leading to production of a variety of antiviral molecules including type I interferons and proinflammatory cytokines. Previous work from the laboratory has revealed mechanistic and structural insights into how the interplay between cellular signalling, TF activation and coassembly on transcriptional enhancers controls gene expression (Fig. 1). Higher-order transcription factor complexes such as the enhanceosome frequently recruit the co-activators CBP/p300. CBP/p300 are important to integrate the cellular signals by providing a scaffold function. CBP/p300 also acetylate chromatin and ultimately, in conjunction with remodellers and histone chaperones, makes chromatin permissive for gene transcription.

One important first step toward characterising such dynamic processes is to determine the molecular architecture of essential components. We are using a combination of biophysical techniques including X-ray crystallography, cryo-electron microscopy, crosslinking and native mass spectrometry, and more to address the following questions concerning information transfer in this system:

  • What is the architecture of signalling complexes that direct innate immune responses and control gene expression?
  • How do these signalling pathways lead to assembly of higher-order transcriptional regulatory complexes?
  • How does assembly of such regulatory complexes ultimately lead to chromatin acetylation, a modification found on active chromatin?
  • How does chromatin modification direct nucleosome remodelling and gene regulation?
  • How do components that regulate higher order chromatin structure contribute to genome regulation?

Answers to some of these questions are expected to contribute to our understanding of chromatin regulation and dysregulation in disease. This is not only of fundamental importance for cellular signalling and gene regulation, but also opens up opportunities for pharmacological targeting.

Atomic model of the INF-β enhanceosome: Transcription factor coassembly on the enhancer DNA reveals molecular insights into signal integration.
Atomic model of the INF-β enhanceosome: Transcription factor coassembly on the enhancer
DNA reveals molecular insights into signal integration.

Gallery of recent work from the laboratory
Gallery of recent work from the laboratory.

(A) Structure of TBK1 kinase. (Larabi et al. 2013 Cell Reports).
(B) Structure of the catalytic core of p300 reveals an assembled configuration
with a bromodomain, PHD, RING and HAT domain (Delvecchio et al. 2013 NSMB).
(C) Model of the quaternary Cohesin complex Smc1 (red), Smc3 (blue), Scc1 (green) and Pds5 (magenta) (Muir et al. 2017 Cell Reports).
(D) Structure of the nucleosome assembly protein 1 (Nap1) in complex with histones H2A-H2B.
Xray and negative stain EM structures of the complex are shown (Aguilar–Gurrieri C.et al. 2016, EMBOJ).

Key Publications

To view Daniel Panne's departmental page, please click here.

Share this page: