GRB 130831A: Rise and Fall of a Magnetar at z = 0.5

M. De Pasquale

Mullard Space Science Laboratory – University College London

S. Oates, M. Page, S. Zane (MSSL-UCL), D. A. Kann (TLS), B. Zhang (UNLV), S. Schulze (PUC), A. Pozanenko, A. Volnova (IKI), A. Trotter, N. Frank, D. Reichart, J. Haislip (UNC), A. Cucchiara (ORAU), J. Racusin, E. Troja, A. Lien (NASA-GSFC), Z. Cano (U of Iceland), N. Butler (ASU), A. Castro-Tirado, J. Gorosabel (IAA-CSIC), and many others
Long duration Gamma-ray Bursts

- Cosmological sources, z from 0.0085 to 9.4

- Able to produce up to 10^{55} erg ($\sim 5 M_\odot c^2$) in prompt γ-ray and X-ray emission

- Power long-living “afterglows” visible in radio, optical, X-ray

- Associated with the death of massive stars

Basic questions on the physics of their sources are still open, for example:

- What is the central engine (black hole, magnetar, something exotic) and how does it work?

- What are the mechanism(s) that emit the high-energy radiation? How long can this emission last?
Prompt emission: produced by dissipation process(es) (shocks, magnetic reconnection, …) within the ultra-relativistic ejecta. As a consequence, it can vary and die very quickly.

Afterglows: synchrotron radiation by electrons of the circumburst medium, energized by the forward shock (FS) driven by the ejecta.

\[F_\nu \approx t^{-\alpha} \nu^{-\beta} \]

FS emission fades with time but it lasts forever…
Typical FS afterglows vs “internal” afterglows

X-ray and opt afterglows decays follow a “canonical model”.

Plateaux then slightly steeper decays, explained as FS emission

However, a few X-ray afterglow plateaux give way to fast decay with $\alpha \sim 5 - 9$

can’t be interpreted as FS emission

It’s still internal dissipation

Testable and important prediction of the “internal emission” afterglow scenario:

Once high energy internal emission turns off, the X-ray flux will drop until the underlying, slowly decaying FS emission becomes dominant

The steep decay will end and give way to a slow decay, similar to that in the optical
Enter Swift GRB 130831A

- Detected by Swift and Konus;
- Bright and well sampled X-ray and optical afterglow;
- $z = 0.48$, spectroscopic detection of SN 2013fu (Cano et al. 2014)

- XRT detects a plateau followed by a very steep decay, with slope $\alpha \sim 7$, at 10^5 s;
- Late Chandra DDT observations (PI: De Pasquale) show a new, slowly decaying component
- The optical LCs show an unbroken power-law decay; slope consistent with late X-ray
Early emission: signature of magnetar “central engine”?

Energy source: spin down process

Basic Scenario: B constant

Luminosity L roughly constant up to τ

$$L(t) = L_0 \frac{1}{(1 + t/\tau)^2} \approx \begin{cases} L_0, & t \ll \tau, \\ L_0(t/\tau)^{-2}, & t \gg \tau. \end{cases}$$

More realistic scenario B decays as P increases

$$B = 10^{16} R_6^{-1/2} P_{-3}^{-1} \, \text{G}$$

Luminosity decreases with time

Once the magnetar has spun down, it may collapse into a BH

$$T_{\text{collapse}} \approx 6 \times 10^4 \, \text{s}$$

...and drops dead

Late emission: Forward Shock

Built UVOIR and X-ray SED at 173 ks (2 days)

SED fitted by a simple power-law model:

\[\beta_{OX} = 1.03 \pm 0.05 \]

The FS model predicts relations between decay and spectral slopes \(\alpha, \beta \) (Sari et al 98, Chevalier & Li 2000)

<table>
<thead>
<tr>
<th>(\nu)</th>
<th>ISM</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>(< \nu_c)</td>
<td>(\alpha - \frac{3}{2} \beta = 0)</td>
<td>(\alpha - \frac{3}{2} \beta - \frac{1}{2} = 0)</td>
</tr>
<tr>
<td>(\beta = \frac{p-1}{2})</td>
<td>(= 0.03 \pm 0.08)</td>
<td>(-0.47 \pm 0.08)</td>
</tr>
<tr>
<td>(> \nu_c)</td>
<td>(\alpha - \frac{3}{2} \beta + \frac{1}{2} = 0)</td>
<td>(\alpha - \frac{3}{2} \beta + 1/2 = 0)</td>
</tr>
<tr>
<td>(\beta = \frac{p}{2})</td>
<td>(= 0.53 \pm 0.08)</td>
<td>(0.53 \pm 0.08)</td>
</tr>
</tbody>
</table>

FS prediction correct

ISM

\(\nu < \nu_c \)

\(p = 3.06 \pm 0.10 \)
Energy breakdown

Known parameters:

\[E_{K,iso,52} = \left[\frac{\nu F_{\nu}(\nu = 10^{18} \text{ Hz})}{6.5 \times 10^{-13} \text{ ergs s}^{-1} \text{ cm}^{-2}} \right]^{4/(p+3)} \times D_{28}^{8/(p+3)} (1 + z)^{-1} t_d^{3(p-1)/(p+3)} \times f_p^{-4/(p+3)} \epsilon_{B,-2}^{-(p+1)/(p+3)} \epsilon_{e,-1}^{4(1-p)/(p+3)} \times n^{-2/(p+3)} \nu_{18}^{2(p-3)/(p+3)}. \]

Knowing \(p = 3.06 \) and FS flux \(F = 7 \times 10^{-14} \text{ cgs} \)

Assuming typical \(\epsilon_e = 0.3, \epsilon_B = 0.002; n=0.001 \)

We find: \(E_{K,iso} = 11.8 \times 10^{52} \text{ erg} \)

Knowing prompt \(\gamma \)-ray fluence and \(z \) of GRB 130831A, we infer \(E_{\gamma,iso} = 1.1 \times 10^{52} \text{ erg} \)

Luminosity of X-ray “internal emission” up to 100 ks: \(E_{X,iso} = 2.8 \times 10^{50} \text{ erg} \)

The (non-relativistic) kinetic energy of the associated SN 2013fu: \(E_{SN} = 1.9 \times 10^{52} \text{ erg} \)

Total energy produced \(E_{tot} = E_{K,iso} + E_{\gamma,iso} + E_{X,iso} + E_{SN} = 1.5 \times 10^{53} \text{ erg} \)
Magnetar engine energetics

Magnetar energy reservoir is rotational energy:

\[E_{\text{rot}} = \frac{1}{2} I \omega^2 = 3 \times 10^{52} \left(\frac{M}{1.4M_\odot} \right) \left(\frac{R}{12\text{km}} \right)^2 P_{\text{ms}}^{-2} \text{ erg} \]

Thus, an \(E_{\text{tot}} = 1.5 \times 10^{53} \text{ erg} \) rules out a magnetar?

Not necessarily. We have assumed isotropic emission. GRBs are collimated sources!
Jet expansion: break in the FS light curve

Knowing t_{jet}, E_K, redshift z, assuming reasonable n, we get θ_{jet}:

$$\theta_{\text{jet}} = 0.12 \left(\frac{t_{\text{jet},d}}{1+z} \right)^{3/8} \left(\frac{E_{K,53}}{n} \right)^{-1/8} \text{ rad}$$

Beaming-corrected energy:

$$E_{\text{corr}} = E_{\text{iso}} \times \theta_{\text{jet}}^2 / 2$$

$f_b \leq 1$
No jet break: lower limit on θ_{jet} and energetics

$\theta_{\text{jet}} \geq 0.12$ rad $\rightarrow f_b \geq 0.008 \rightarrow E_{\text{tot}} \geq 2e+52$ erg (less than the magnetar limit)

If we had $f_b = 0.1 \rightarrow E_{\text{tot}} = 3e+52$ erg (the magnetar limit)
Summary of energy breakdowns

<table>
<thead>
<tr>
<th>Beaming factor f_b</th>
<th>$E_{\text{tot,52}}$</th>
<th>$E_{\gamma, \text{corr}}$</th>
<th>$E_{X, \text{corr}}$</th>
<th>$E_{K, \text{corr}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.008 (lower limit)</td>
<td>2.0</td>
<td>0.4%</td>
<td>0.01%</td>
<td>4.5%</td>
</tr>
<tr>
<td>0.1 (magnetar limit)</td>
<td>3.0</td>
<td>3.3%</td>
<td>0.1%</td>
<td>37%</td>
</tr>
<tr>
<td>1 (isotropic outflow)</td>
<td>15</td>
<td>0.4%</td>
<td>0.2%</td>
<td>80%</td>
</tr>
</tbody>
</table>

$$E_{\text{tot}} = E_{\gamma} + E_{X} + E_{K} + E_{\text{SN}}$$

Comments

- The energy emitted in X-ray of “internal origin” is always small: 0.2% or less;
- Much more energy is produced in prompt γ-ray emission: 20-40 times as much;
- At least 4.5% of energy explosion goes into kinetic energy of relativistic ejecta (but no more than \sim37% if the central engine is a magnetar).
Conclusions

- We’ve studied the Swift GRB 130831A: its X-ray light-curve shows a very steep break unexplained by the standard Forward Shock model. Such behaviour can be interpreted instead as the end of spin-down emission by a newly born magnetar.

- The late X-ray afterglow, detected by DDT Chandra observations, and the well sampled optical LCs show a more slowly decaying component, interpreted as emergence of an underlying Forward Shock emission.

- Modeling this late FS emission, we infer the kinetic energy of relativistic ejecta E_K; and gathering the energetics of the γ-ray prompt emission E_γ, the X-ray emission of “internal origin” E_X, and the kinetic energy of SN 2013fu, we work out the breakdown of the total energy of the explosion. This is the energy breakdown for a GRB with internal emission, associated SN, and likely magnetar central engine.

- We find that, regardless of the beaming, $\leq 0.2\%$ of all energy goes into E_X, while 20-40 times as much goes into E_γ; at least 4% of all energy goes into relativistic kinetic energy (less than 37% if the central engine is a magnetar).
What kind of “central engine” we have got?

A new magnetar is born
Spin-down process temporarily overcome the typical, FS-powered afterglow

Fall-back disk around a newly formed black hole
Depending on the star envelope and disk viscosity, different LCs might be produced, including steep drops

Kumar et al. 2008, Wu et al. 2013
A fall-back black hole?

Low viscosity disk

Pro: it can explain a $10^4 - 10^5$ s plateau.

Con: it predicts a post-plateau decay slope of $\alpha \sim 1.3$, whereas we have $\alpha \sim 7$.

High viscosity disk; $L \sim \dot{M}$

Pro: it might explain the post-plateau $\alpha \sim 7$.

Con: Fall back and Accretion for $\sim 10^5$ s required. To explain the plateau $\alpha \sim 0.8$ and steep drop, one needs non-standard density profile and low angular momentum of the progenitor envelope.

Merger of a compact object with a WR star (Barkov & Komissarov 2010)

Pro: luminosity and accretion time scale may be in the right range.

Con: same as above.
What are the newly born magnetar parameters?

\[
L_0 = 1.0 \times 10^{49} \text{ erg s}^{-1} (B_{p,15}^2 P_{0,-3}^{-4} R_6^6)
\]
\[
\tau = 2.05 \times 10^3 \text{ s} (I_{45} B_{p,15}^{-2} P_{0,-3}^2 R_6^{-6})
\]

\(P_0 \sim 1\text{-}10\text{ms}, B_p \sim 10^{15\text{-}16} \text{ G} \) can explain most bursts with internal plateau.

For GRB130831A:

\(B \sim 3.5 \times 10^{14} \text{ G}, P_0 = 2 \text{ ms}:\)

\(L_0 = 10^{47} \text{ erg/s}, 1 \text{ order of magnitude larger than observed but can’t see all the emission!}\)

\(\tau = 70000 \text{ s}; (1+z) = 10^5 \text{ s}, \text{ as observed}\)
SN 2013fu associated to GRB 130831A

\[M_v = -19.2 \pm 0.2 \]

\[0.85 \times \text{SN1998bw} \]

\[M_{Ni} = 0.30 \pm 0.07 \, M_{\odot} \]

\[M_{ej} = 4.7 +0.8_{-0.6} \, M_{\odot} \]

\[E_K = 1.9 +0.9_{-0.6} \times 10^{51} \, \text{erg} \]

Cano et al. 2014
Is the slow decay after the steep drop real?

Fit with one power-law: $\chi^2 / \text{d.o.f.} = 17.8 / 5$

Fit with 2 power-law’s: $\chi^2 / \text{d.o.f.} = 2.4 / 3$

$F (1.5 \text{ Ms}) \approx 5 \times 10^{-17} \text{ erg cm}^{-2} \text{ s}^{-1}$: no detection at all, even with Chandra!

Instead, Chandra ToO at 1.5 Ms yielded 8 counts, i.e. $\approx 5.4 \sigma$ detection
How robust is our estimate of E_K?

Kinetic energy E_K does depend on assumptions on ε_e, ε_B and n. However:

cooling frequency ν_c above X-ray band implies that ε_B and n cannot be much larger than the assumed 2×10^{-3} and 10^{-3}:

$$\nu_c \sim \varepsilon_B^{-3/2} n^{-1} t^{-1/2} >> \nu_X \text{ at } t = 2 \text{ days;}$$

On the other hand, $n < 10^{-3}$ is not expected for long GRBs which occur in dense star forming regions, and $\varepsilon_B < 0.001$ may produce IC, which is not observed;

ε_e cannot be much lower than 0.3: $\nu_m \sim \varepsilon_e^2 t^{-3/2}$ and, for $\varepsilon_e < \sim 0.25$, the synchrotron peak would be close to the radio band and violate EVLA radio upper limits.

Our estimate on E_K is therefore robust at least as order of magnitude