EPIC-pn Observations of Cygnus X-1
Preliminary Results

Jörn Wilms (University of Warwick/Tübingen)

with

E. Kendziorra (IAAT), M.A. Nowak (CXC/MIT), K. Pottschimidt (ISDC/UCSD),
F. Haberl (MPE), M. Kirsch (ESA/ESAC)
R.P. Fender, T. Maccarone (Southampton), M. van der Klis (Univ. Amsterdam), G.G. Pooley (Univ. Cambridge),
A.A. Zdziarski (Warsaw), C. Brocksopp (UCL), N.S. Schulz (MIT), P. Coppi (Yale)

1. Science from bright sources
2. Observing bright sources with XMM-Newton
3. Cyg X-1 as a test case
4. Timing Results
5. Spectral Results
6. Outlook
Why bright sources?, I

What we want to learn:

1. What does the accretion region look like: "accretion geometry"
2. What are the physical processes responsible for the broad-band emission?
3. Is there evidence for GR effects?

AGN and BHC have similar geometry \implies study similar physical processes!

X-rays produced close to event horizon, observations give one of the few constraints to study physics in the strong gravitational field limit.
Bright (\(> 100 \text{mCrab} \)) sources are crucial for our detailed understanding of accretion as a physical process.

- **test relativity** (variable and broad Fe K\(\alpha \) lines)
- **Accretion geometry**: Comptonization versus jet emission, reflection, . . .
- **strong short term variability out to \(> 100 \text{Hz} \) (10% rms \(\implies \) produced close to compact object?)
- **variability on all timescales** (\(\dot{M} \) variations? – cannot study with AGN at all!)
- **high resolution X-ray spectroscopy** \(\implies \) stellar winds, absorption dips, . . .

(Note: complementary to AGN studies!)

Need high SNR high time resolution observations
Bright Sources with XMM

What is available? – Look at XMM UHB:

<table>
<thead>
<tr>
<th></th>
<th>MOS</th>
<th>pn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time res.</td>
<td>Live time [%]</td>
</tr>
<tr>
<td>MOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full frame (600×600)</td>
<td>2.6 s</td>
<td>100.0</td>
</tr>
<tr>
<td>Large window (300×300)</td>
<td>900 ms</td>
<td>99.5</td>
</tr>
<tr>
<td>Small window (100×100)</td>
<td>300 ms</td>
<td>97.5</td>
</tr>
<tr>
<td>Timing uncompressed (100×600)</td>
<td>1.5 ms</td>
<td>100.0</td>
</tr>
<tr>
<td>pn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full frame (376×384)</td>
<td>73.4 ms</td>
<td>99.9</td>
</tr>
<tr>
<td>Ext. full frame (378×384)</td>
<td>200 ms</td>
<td>100.0</td>
</tr>
<tr>
<td>Large window (198×384)</td>
<td>48 ms</td>
<td>94.9</td>
</tr>
<tr>
<td>Small window (63×64)</td>
<td>6 ms</td>
<td>71.0</td>
</tr>
<tr>
<td>Timing (64×200)</td>
<td>0.03 ms</td>
<td>99.5</td>
</tr>
<tr>
<td>Burst (64×180)</td>
<td>7 μs</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Important to note:

cps limit of EPIC pn timing mode due to telemetry, NOT due to camera capabilities!

Therefore:

- Give EPIC-pn as much telemetry as possible
 \implies switch off EPIC-MOS (sorry!)

- Only transmit those events that are interesting
 \implies only throw away soft photons

Modified Timing Mode: increase lower energy discriminator in EPIC pn from 200 eV to 2.8 keV.
Why Cyg X-1?

Cyg X-1 is ideal target for testing modified timing mode:

- Never before observed with *XMM-Newton* (Earth avoidance zone).
- Interesting soft spectrum (RGS!)
- Fe Kα line variable, might be broad
- Strong, energy dependent variability
- Long term variability well studied (*RXTE* campaign since 1999, so previous history of source well known)

Observing Log:

<table>
<thead>
<tr>
<th>Date</th>
<th>XMM</th>
<th>RXTE</th>
<th>INTEGRAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/15 Nov 2004</td>
<td>17600</td>
<td>12000</td>
<td>58000</td>
</tr>
<tr>
<td>20/21 Nov 2004</td>
<td>17700</td>
<td>16700</td>
<td>80000</td>
</tr>
<tr>
<td>26/27 Nov 2004</td>
<td>20000</td>
<td>26000</td>
<td>79000</td>
</tr>
<tr>
<td>02/03 Dec 2004</td>
<td>10000</td>
<td>10000</td>
<td>80000</td>
</tr>
</tbody>
</table>

(plus simultaneous radio [Ryle] and optical [Crimea])
Previous History

The graph shows the RXTE ASM cps data from 1996 to 2004. The x-axis represents Julian Days (JD) minus 2450000, while the y-axis represents RXTE ASM cps. The data fluctuates significantly during the period, with peaks and troughs visible.
Will concentrate on first observation here.
Overall EPIC-pn lightcurve (observation 1, 10 s bins)
Total power spectral density (multiplied with frequency, log binned)

Standard triple Lorentzian shape known from RXTE-PCA, characteristic for hard state.

Pottschmidt, Wilms, Nowak et al., 2003
PSDs for 3–5, 5–7, and 7–9.5 keV (multiplied with frequency, log binned)

→ narrower energy bands than with the RXTE
Energy resolved rms: *Influence of reflection component*?
(cf. Revnivtsev et al., 2000)
Overall spectrum

But: Different single/double fraction as low energy split partners disappear \implies different energy redistribution

Timing mode requires recalibration!
Comparision of standard timing mode and modified timing mode for Vela X-1.
Complications, II

$P_{I_{\text{timing}}} \text{ vs. } P_{I_{\text{modified}}}$:
- 200 eV gap: lower energy threshold for standard timing mode
- shape of low energy distribution
 - width of peak: energy randomization in chain, high E events: wrong assignment of simultaneous events

\implies Use distribution to build RMF based on existing (calibrated) timing mode RMF.
Fit of eqpair model to RXTE/INTEGRAL.

\(\chi^2 / \text{dof} = 235 / 228, \)
\(kT_{\text{in}} = 1 \text{ keV}, \tau_e = 1.13, \)
\(\ell_h / \ell_s = 2.86, \)
\(\Omega / 2\pi = 0.31 \)
Spectral Fits

Fit of eqpair model to RXTE/INTEGRAL

\[\chi^2 / \text{dof} = 235 / 228, \]
\[kT_{\text{in}} = 1 \text{ keV}, \tau_e = 1.13, \]
\[\ell_h / \ell_s = 2.86, \]
\[\Omega / 2\pi = 0.31 \]
eqpair to

$XMM/RXTE/INTEGRAL$

(no fit – DON’T take this serious!)
Modified timing mode works in principle, first results are promising, so far no show stoppers...

Still to do:

- higher order Fourier quantities (time lag, coherence, rms-flux)
- Fe $K\alpha$ variability
- spectral calibration
- Fourier frequency resolved spectroscopy
- broad-band analysis

(most of the work, really...)