Mass and spin
of the galactic center black hole Sgr A*

Bernd Aschenbach, MPE Garching

Ringberg, April 11, 2005
IF $M_{\text{BH}} = 3.6 \times 10^6 M_\odot$ and IF 16.8 min $= P_{\text{Kepler}}$ then $a = 0.5$
members of the same group have $\Delta P/P \leq \frac{1}{n-1}$

<table>
<thead>
<tr>
<th>State/</th>
<th>Instrum.</th>
<th>f (mHz)</th>
<th>n (s)</th>
<th>P (s)</th>
<th>psd</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>flare</td>
<td>XMM</td>
<td>9.123</td>
<td>32</td>
<td>110</td>
<td>6.3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Chandra</td>
<td>10.41</td>
<td>72</td>
<td>96</td>
<td>0.78</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>XMM</td>
<td>4.562</td>
<td>16</td>
<td>219</td>
<td>15.3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Chandra</td>
<td>3.902</td>
<td>27</td>
<td>256</td>
<td>0.78</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>XMM</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Chandra</td>
<td>2.023</td>
<td>14</td>
<td>494</td>
<td>0.46</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>XMM</td>
<td>1.426</td>
<td>5</td>
<td>701</td>
<td>16.4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Chandra</td>
<td>1.445</td>
<td>10</td>
<td>692</td>
<td>0.49</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>XMM</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>Chandra</td>
<td>0.434</td>
<td>3</td>
<td>2307</td>
<td>1.6</td>
<td>5</td>
</tr>
<tr>
<td>precursor</td>
<td>XMM</td>
<td>0.853</td>
<td>13</td>
<td>1173</td>
<td>1.3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chandra</td>
<td>0.895</td>
<td>20</td>
<td>1117</td>
<td>0.11</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>XMM</td>
<td>0.459</td>
<td>7</td>
<td>2178</td>
<td>1.9</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Chandra</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IR flare</td>
<td>XMM</td>
<td>4.76</td>
<td>24</td>
<td>214</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IR/15</td>
<td>2.0</td>
<td>6</td>
<td>498</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>IR/16</td>
<td>1.39</td>
<td>7</td>
<td>733</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IR/15</td>
<td>1.0</td>
<td>5</td>
<td>996</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>IR/16</td>
<td>0.99</td>
<td>5</td>
<td>1026</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>
The Equations

\[v^{(\Phi)} = \frac{\bar{\omega}}{\alpha} (\Omega - \omega), \]
with the Boyer-Lindquist functions:

\[\alpha = \frac{\Omega}{\Sigma}, \]
\[\Delta = r^2 - 2Mr + a^2, \]
\[\rho^2 = r^2 + a^2 \cos^2 \theta, \]
\[\Sigma^2 = (r^2 + a^2)^2 - a^2 \Delta \sin^2 \theta, \]
\[\bar{\omega} = \frac{\Sigma}{\rho} \sin \theta, \]
\[\omega = \frac{2a M r}{\Sigma^2}. \]

\[v^{(\Phi)}(r, a) \] is solved numerically, setting \(\Omega = \Omega_K \).

Results

\[v^{(\Phi)}(r, a) \] decreases monotonically with increasing \(r \)
for \(a \leq 0.9953, \)
\[v^{(\Phi)}(r, a) \] shows a local minimum and a local maximum
close to the marginally stable orbit
for \(a > 0.9953! \)
Figure 1: Orbital velocity $v^{(\Phi)}$ versus orbital radius for $a = 0.99616$. Outside the radial range shown $v^{(\Phi)}$ decreases monotonically with radius.

N.B. $\partial v^{(\Phi)}/\partial r \geq 0$; it represents the velocity change per unit length in radial direction and is measured in $(\text{time})^{-1}$. One can define a sort of related angular frequency $\Omega_c = 2\pi \frac{\partial v^{(\Phi)}}{\partial r} \bigg|_{\text{max}}$ derived for $r_{\text{min}} < r < r_{\text{max}}$.
Figure 4: As a function of \((1 - a)\) are shown the radial position \(r_{\text{max}}\) of the local maximum of \(v^{(\Phi)}\) (curved dashed line), the radial position \(r_{\text{min}}\) of the local minimum of \(v^{(\Phi)}\) (curved dotted line). The vertical dashed line is at \(a = a_c = 0.9953\). The cross marks \(r_{31}\) and \(a = a_f = 0.99616\), which is the solution of the parametric resonance model with commensurable orbits. The solid line represents the innermost marginally stable orbit \(r_{ms}\) defined by \(\Omega_R = 0\).
Characteristic accretion disk frequencies

from Nowak & Lehr, 1998

\[\Omega_K = (r^{3/2} + a)^{-1} \]

Kepler

\[\Omega_V^2 = \Omega_K^2 \left(1 - \frac{4a}{r^{3/2}} + \frac{3a^2}{r^2}\right) \]

vertical epicyclic

\[\Omega_R^2 = \Omega_K^2 \left(1 - \frac{6}{r} + \frac{8a}{r^{3/2}} - \frac{3a^2}{r^2}\right) \]

radial epicyclic

\[\Omega_{LT} = \frac{2a}{r^3} \]

Lense-Thirring

c = G = 1,

\[[r] = \frac{GM}{c^2}, \]

\[r = 1 = r_g, \]

\[[\Omega] = \frac{c^3}{GM}, \]

\[a = \frac{cJ}{GM^2}. \]

\[r = r_{ms} \quad \text{if} \quad \Omega_R = 0 \]

\[\Rightarrow \Omega_K > \Omega_V > \Omega_R, \quad \text{for} \ a \to 1: \Omega_{LT} > \Omega_K \]
R: radial epicyclic frequency for r_{max} and r_{min}.

V: vertical epicyclic frequency.

$c = \Omega_c = 2\pi \frac{\partial \omega^{(e)}}{\partial r} \bigg|_{max}$.

For the crossing of $[c]$ and $[V/R = 3:1]$ harmonic resonances exist:

$$\Omega_c = 2\pi \frac{\partial \omega^{(e)}}{\partial r} \bigg|_{max} = R \text{ und } V = 3 \times R.$$

The solution fixes the spin at $a = 0.99616$

and the distance to the central black hole at $r = 1.546$.

A simple relation between the mass of the black hole and any of the epicyclic frequencies, e.g. V, emerges:

$$M = \text{const.} / V$$
$M_{\text{BH}} = 2.6 \pm 0.2 \times 10^6 M_\odot$

(Genzel et al., 1996)

$M_{\text{BH}} = 3.7 \pm 1.5 \times 10^6 M_\odot$

(Schödel et al., 2002)

$M_{\text{BH}} = 4.07 \pm 0.62 \times 10^6 M_\odot \ (R_0/8 \ \text{kpc})^3$

(Ghez et al., 2003)

$M_{\text{BH}} = 3.59 \pm 0.59 \times 10^6 M_\odot$

(Eisenhauer et al., 2003)

$M_{\text{BH}} = 3.7 \pm 0.4 \times 10^6 M_\odot \ (R_0/8 \ \text{kpc})^3$

(Ghez, 2004)

$M_{\text{BH}} = 3.61 \pm 0.32 \times 10^6 M_\odot$

(Eisenhauer et al., 2005)

$M_{\text{BH}} = 3.28 \pm 0.13 \times 10^6 M_\odot$

(Aschenbach, 2004)
The Model

Frequency ratios are due to resonances between radial (Ω_R) and vertical (Ω_V) epicyclic oscillations enforced by Kepler (Ω_K) commensurable orbits:

i.e., with $r =$ orbit radius, $a =$ BH angular momentum there exist 2 radii r_{31} and r_{32} such that:

(a) $\Omega_V(r = r_{31}, a)/\Omega_R(r = r_{31}, a) = 3 : 1$,

(b) $\Omega_V(r = r_{32}, a)/\Omega_R(r = r_{32}, a) = 3 : 2$,

(c) $\Omega_K(r = r_{31}, a) = n \times \Omega_K(r = r_{32}, a)$, \hspace{0.5cm} (n a natural number).

The only solution of Equ. (a) - (c) is:

$n = 3, \hspace{0.5cm} a = 0.99616, \hspace{0.5cm} r_{31} = 1.546, \hspace{0.5cm} r_{32} = 3.919$

r in GR units

Conclusion: There are two possible radii, r_{31} or r_{32}, where Ω_R and Ω_V are in resonance; the angular momentum a is identical.

The mass of the black hole M_{BH} is given by

$M_{BH,31}/M_{\odot} = 4603.3/\nu_{up}$ \hspace{0.5cm} for $r = r_{31}$, or

$M_{BH,32}/M_{\odot} = 3046.2/\nu_{up}$ \hspace{0.5cm} for $r = r_{32}$.

ν_{up} [Hz] is the highest frequency observed in the twin or triplet.
High-Frequency Quasi-Periodic Oscillations in Galactic Black Hole Binaries

GRO J1655-40: 450 Hz, 300 Hz | ratio = 3:2

XTE J1550-564: 276 Hz, 184 Hz | ratio = 3:2

GRS 1915+105: 168 Hz, 113 Hz | ratio = 3:2

(relative frequency error ≈ 1.5%)
Comparison with Observations

Masses of the microquasars and Sgr A* have been measured dynamically, using stars orbiting the black hole. These masses \(M_{BH,\text{dyn}} \) are compared with the predictions of the model based on the measured QPOs \(M_{BH,\text{model}} \).

\[
\begin{align*}
\text{GRO J1655-40:} & \quad M_{BH,\text{dyn}} = 7.02 \pm 0.22 M_\odot \quad & M_{BH,\text{model}} = 6.76 \pm 0.1 M_\odot \\
& \quad M_{BH,\text{dyn}} = 5.8 - 6.8 M_\odot \\
\text{XTE J1550-564:} & \quad M_{BH,\text{dyn}} = 8.4 - 11.6 M_\odot \quad & M_{BH,\text{model}} = 11.04 \pm 0.2 M_\odot \\
\text{GRS 1915+105:} & \quad M_{BH,\text{dyn}} = 14.0 \pm 4.0 M_\odot \quad & M_{BH,\text{model}} = 18.13 \pm 0.36 M_\odot \\
& \quad \text{(} i = 66^\circ \text{)} \\
& \quad \text{(} M_{BH,\text{dyn}} = 17.8 \pm 5.5 M_\odot \text{)} \quad \text{for} \ i = 53^\circ \\
\text{Sgr A* [10}^6 M_\odot\text{:} & \quad M_{BH,\text{dyn}} = 3.7 \pm 1.5 \\
& \quad M_{BH,\text{dyn}} = 4.07 \pm 0.62 \\
& \quad M_{BH,\text{dyn}} = 3.59 \pm 0.59 \\
\end{align*}
\]

N.B., \(r = r_{32} \) for microquasars, \(r = r_{31} \) for Sgr A*!
• 3 microquasars and Sgr A* have \(a = 0.99616 \); does this indicate that \(a = 0.99616 \) is the highest value it can grow to, thus replacing the 'Kip Thorne' limit?

• 3 microquasars and Sgr A* have in common twin (3:2) or triplet (3:2:1) QPOs, have the same \(a \) and have each a jet; does the existence of any of these 3 properties imply the existence of the other two?

• Are the vertical epicyclic oscillations at \(r = 1.546 \) the seed for the creating of jets? If they are,
 - the width \(d \) of a jet at its base would be \(d = 1.5 \times 10^{12} \) cm for Sgr A*. Bower et al. (2004) have recently measured \(d < 2.4 \times 10^{12} \);
 - there would be the possibility that jets could be created by strong gravity effects rather than electromagnetic effects (the Blandford-Znajek mechanism).
A scenario and some ideas

1. If \(a \) has reached 0.99616 radial epicyclic oscillations are excited at \(r = 1.546 \) because of \(\Omega_c = \Omega_R \). \(\Omega_V \) is excited as well because of the resonance with \(\Omega_R \). This is valid for a test particle and for very low accretion rates \(\dot{M} \).

2. At higher \(\dot{M} \) the amplitudes of \(\Omega_R \) and \(\Omega_V \) grow and energy is stored.

3. At even higher \(\dot{M} \) the vertical oscillations become unstable because they can’t store the energy anymore. The source flares (the state of Sgr A*; timescales: rise time \(\sim \) one cycle of \(\Omega_V \), flare duration \(\sim \) a few cycles of \(\Omega_R \)) at most.

4. With increasing \(\dot{M} \) the amplitude of \(\Omega_R(r_{31}) \) grows and a radial wave is running back and forth through the disk, until it reaches \(r = 3.919 \) starting to excite \(\Omega_R(r_{32}) \) and \(\Omega_V(r_{32}) \). This is the state of the 3 microquasars.