Land Surface Data Assimilation at ECMWF

Patricia de Rosnay, Gianpaolo Balsamo, Clément Albergel, Joaquín Muñoz Sabater, Souhail Boussetta, Johannes Kaiser, Lars Isaksen, Anton Beljaars, Jean-Noël Thépaut, Peter Bauer
The ECMWF Integrated Forecasting System (IFS) data assimilation system

Data Assimilation System:
Provides best possible accuracy of initial conditions to the forecast model

Analysis:
- 4D-VAR for atmosphere
- Surface analysis

- Initialisation of soil variables ➔ significant impact on numerical weather forecast on both short and medium range
- Statistical techniques developed for atmospheric and oceanic analyses ➔ now applied to continental surfaces
ECMWF Land surface data assimilation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OI screen level analysis</td>
<td>Revised snow analysis</td>
<td>New snow analysis (11.2010)</td>
</tr>
<tr>
<td>Mahfouf et al. (2000)</td>
<td>Cressman snow depth analysis using SYNOP data improved by using NOAA / NESDIS Snow cover extend data (24km)</td>
<td>High resolution NESDIS data (de Rosnay et al., 2011)</td>
</tr>
<tr>
<td>Soil moisture 1D OI analysis based on Temperature and relative humidity analysis</td>
<td></td>
<td>SEKF Soil Moisture analysis (11.2010)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simplified Extended Kalman Filter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drusch et al. (2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>de Rosnay et al. (2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use of satellite data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>METOP-ASCAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>de Rosnay et al., 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sabater et al., 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMAP Early Adopter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Validation activities (H-SAF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Albergel et al. 2011</td>
</tr>
</tbody>
</table>

SYNOP Data

NOAA/NESDIS IMS

Operational Research
Snow Analysis

- Simple snow analysis scheme in NWP centres:
 - Cressman at DWD, ECMWF ERA-Interim
 - OI at CMC, JMA, ECMWF Medium-Range (Nov. 2010)
- Use of SYNOP snow depth and snow cover data (NOAA/NESDIS/IMS)
- No current operational use of Snow Water Equivalent product in NWP
- Future developments: investigate the use of SWE and SCE in EKF analysis

Requirement:

- Advanced SWE data assimilation systems developments
- High quality SWE products for NWP
 - Short latency (NRT is within three hours)
 - Accurate location and variations of SWE and snow line (albedo effects)
 - Global coverage, frequent revisit time (ideally 1-day)
Soil moisture analysis

- Nov. 2010 Simplified Extended Kalman Filter (EKF) replaced the previous Optimum Interpolation (OI, 1999-2010)
- Possible to investigate the use of new generation of satellite data:
 - SM active microwave (MetOp/ASCAT, L-band SMAP)
 - SM passive microwave (L-band SMOS, SMAP)
- Possibility to combine different sources of information

- Dynamical estimates of the Jacobian Matrix that quantify accurately the physical relationship between observations and soil moisture
- Flexible to account for the land surface model evolution
Simplified EKF soil moisture analysis

For each grid point, analysed state vector x_a:

$$x_a = x_b + K (y - H[x_b])$$

x_b background state vector,
H non linear observation operator
y observation vector
K Kalman gain matrix, fn of
H (linearisation of H), B and R (covariance matrices of background and observation errors).

Observations used:

- **Operational**: Conventional SYNOP observations (T2m, RH2m)
- **Research** (ECMWF, Météo-France, BoM, CMC): Satellite data from ASCAT, SMOS, AMSR-E
- **UKMO** uses ASCAT in operations in a nudging data assimilation scheme
SMOS Monitoring

- Soil Moisture and Ocean Salinity (launched in 2009)
- Earth Explorer Mission
- Passive microwave interferometric radiometer operating at L-band (1.4 GHz)
- Multi-angular measurements of Brightness Temperature (TB) (Kerr et al., 2010)
- Data access in NRT

SMOS NRT TB product

ECMWF SMOS L1c TB (K) NRT Monitoring (TBV 50°) Aug. 2011
SMOS Monitoring

- Routinely production of statistics with SMOS TB, model equivalents and background departures, in NRT
 - Global scale,
 - Land and ocean separately,
 - Several incidences angle [10, 20, 30, 40, 50, 60],
 - Two polarisations states [XX, YY],
 - Independently per continent and hemispheres
ASCAT monitoring

Advanced Scatterometer on MetOP (launched in 2006)

Active microwave instruments operating at C-band (5.6GHz) ~0.5-2 cm

Surface soil moisture index (ms) based on TUWien retrieval scheme (Wagner et al., 1999)

ASCAT operational SM product: NRT data and disseminated to Numerical Weather Prediction community via EUMETCAST

~50 km resampled 25km

ASCAT operational NRT

SSM Monitoring Aug. 2011
ASCAT monitoring

13 September:
Improved Bias Correction:
Good agreement between ECMWF and ASCAT (global)

18 August:
Improved ASCAT product
More data used
Future plans and associated requirements

Current Land Data Assimilation status: soil moisture and snow depth data assimilation for Medium-Range forecasts, Seasonal forecasts and Re-analysis

SNOW:
- SWE products: High quality, NRT (latency <3h), frequent revisit (daily)
- GlobSnow under investigation for validation activities
- Need to develop advanced Snow data assimilation to cope with satellite data and to combine with other land variables DA (Multivariate approach)
- Consistency SWE & SCE for the snow line (albedo effect)
- Model resolution: 2011; 16km, 2015; 10km Data needed at < 10km; in 2020, data at a resolution better than 5km required
Future plans and associated requirements

SOIL MOISTURE

- NRT (latency <3h), frequent revisit time (<3d), High resolution (<10km)

- Ongoing investigations to combine SYNOP, SMOS and ASCAT

- Multivariate approaches (→ LSM and LDAS developments)

- SMOS and ASCAT synergy and continuity

- NASA SMAP (Soil Moisture Active and Passive, 2014), concept → exploitation of the synergy between active and passive measurements to provide high resolution SSM (9km)

- Accuracy: For NWP, requirements in terms of correlation and anomaly correlation (time variations, not absolute magnitude)
Future plans and associated requirements

Vegetation and Carbon cycle activities

- **Today:** no operational data assimilation of vegetation data for NWP

- ECMWF investigates assimilation of vegetation parameters (Leaf Area Index) within Geoland-2

- **Continuity of the GEOLAND-2 project**
 - Adapt the existing LDAS to the assimilation of Sentinel data (including S1 biomass and SSM if available)
 - Investigate assimilation of new variables (e.g. albedo, FAPAR, burnt areas)

- Importance of the synergy between vegetation parameters data assimilation and hydrological cycle data assimilation (soil moisture, SWE)
Future plans and associated requirements
Some MACC(-II) land activities and requirements

- NRT assimilation of atmospheric composition observations
 - Analysis may be used for atmospheric correction of satellite data
- NRT assimilation of Fire Radiative Power observations
 - To calculate fire emission boundary conditions for the atmospheric systems
 - So far using MODIS, SEVIRI (GOES-E/W under development)
 - Need for continuation of LEO-based FRP
 - Need for better temporal sampling from LEOs: additional instrument would help
 - Need for correction of small fires below detection threshold: LEO with low detection threshold (through high spatial resolution) would help
- Need of consistent aerosol optical depth and FRP from S3
 (more details in presentation by Martin Wooster)
Future plans and associated requirements

Long term perspectives:
- Consistent evolution of Land surface Modelling and Data Assimilation Systems. ECMWF 10-year strategy ➔ high resolution LSM

- Synergies between Soil Moisture (ASCAT/Post-EPS, SMOS, SMAP), Snow Water Equivalent (CoreH2O, GlobSnow, GMES/SENTINEL), Vegetation parameters (LAI, fapar) (GMES/SENTINELS)

- Importance of horizontal processes (river routing) ➔ Use of integrated hydrological variables such as river discharges (e.g. Surface Water Ocean Topography (SWOT) mission)

More reading and references: ECMWF News Letter 127 (Spring 2011)

http://www.ecmwf.int/publications/newsletters/pdf/127.pdf
(de Rosnay et al., Balsamo et al., Muñoz Sabater et al.)
Land Surface Data Assimilation at ECMWF

Patricia de Rosnay, Gianpaolo Balsamo
Clément Albergel, Joaquín Muñoz Sabater, Souhail Boussetta,
Johannes Kaiser, Lars Isaksen, Anton Beljaars,
Jean-Noël Thépaut, Peter Bauer
New snow Analysis in Operations

Old: Cressman NESDIS 24km

New: OI NESDIS 4km

FC impact (East Asia):

Positive impact of new snow analysis on Z500 Hpa forecasts
Soil Moisture Analysis verification

Verification of ECMWF SM over the SMOSMANIA Network

→ SEKF improves Soil Moisture, improves screen level parameters and opens the possibility to use satellite data
Revised snow analysis from Nov.2010

- Optimum Interpolation Snow analysis:
 Optimal combination of the model background (SWE) and SYNOP (Snow Depth) data

- NESDIS: NOAA/NESDIS/IMS (Interactive Multisensor Snow and Ice Mapping System) 4km snow cover product (Northern Hemisphere daily product)

Information content: Snow/Snow free
http://nsidc.org/data/g02156.html
The observations are used to correct errors in the short forecast from the previous analysis time.

- Every 12 hours we assimilate 15,000,000 observations to correct the different variables that define the model’s virtual atmosphere.
- This is done by a careful 4-dimensional interpolation in space and time of the available observations; this operation takes as much computer power as the 10-day forecast.

Data Assimilation System:
Provides best possible accuracy of initial conditions to the forecast model

Analysis:
- 4D-VAR for atmosphere
- Surface analysis