Abstract: A regular operad on Dyck paths

For $m \geq 1$, the m-Dyck paths are a particular family of lattice paths counted by Fuss-Catalan numbers, which are connected with the (bivariate) diagonal coinvariant spaces of the symmetric group, also called Garsia-Haiman spaces. The cardinal of the set of 1-Dyck paths of size n is the Catalan number c_n, and there exist a natural bijection between this type of lattice paths and the set of planar rooted binary trees with $n + 1$ leaves, the classical Tamari order is defined on both sets. Motivated by the combinatorics of the Garsia-Haiman spaces and by an enumerative formula of Chapoton counting intervals in the Tamari lattice, F. Bergeron introduced in [1] and [2] the m-Tamari lattice, where the case $m = 1$ is the usual Tamari lattice.

In a joint work with D. López N. and L.-P. Préville-Ratelle, we introduced a non-symmetric multiplicative operad Dyckm such that the space of n-ary operations of the theory is precisely the vector space $\mathbb{K}[\text{Dyck}^m_n]$, spanned by all the m-Dyck paths of size n, for any $m \geq 1$. When $m = 1$, we recover the operad of dendriform algebras, introduced by J.-L. Loday in [3].

Given an m-Dyck path of size n, there is a unique way to color its down steps with elements of the set $\{1, \ldots, n\}$ in such a way that F. Bergeron’s covering relation consists in increasing the level of a down step without changing its color. This condition characterizes the order and is the key ingredient of our construction. The operad Dyckm is spanned by $m + 1$ binary operations \ast_0, \ldots, \ast_m, which are given by intervals of F. Bergeron’s m-Tamari lattice.

For any composition \underline{r} of $m + 1$ of length $s + 1$, there exists an operad morphism from Dycks to Dyckm, compatible under composition. The corresponding functor from the category of Dyckm algebras to the category of Dycks algebras preserves free objects.

References

IMAFI, Universidad de Talca, Campus Norte, Camino Lircay s/n, Talca. Chile
E-mail address: mariaronco@inst-mat.utalca.cl