1 Introduction

2 Natural flow
 • Base flow
 • Linear stability analysis
 • Nonlinear analysis
 • Secondary stability analysis

3 Open-loop control
 • General strategy
 • Application to the rotating-disk boundary layer

4 Conclusions and outlook
Some flow visualisations

Rotating bodies

Swept wings

(Kohama 2000)

(Bippes 1999)

The rotating-disk flow

- no intrinsic geometrical length scale
- self-similar basic flow
- boundary layer thickness $\delta = \sqrt{\frac{\nu}{\omega_{\text{disk}}}}$

$$U(r, z) = \begin{pmatrix} rU(z) \\ rV(z) \\ W(z) \end{pmatrix}$$

(Kohama 1984)

laminar flow

turbulent régime

transition at $r \simeq 500\delta$
Typical 3D boundary layers

Common features:
- crossflow component near the wall
- strong inviscid instability
 \(\rightsquigarrow \) growth and saturation of crossflow vortices
- inflection point
- secondary instabilities
 \(\rightsquigarrow \) transition

Known features and questions

- Laminar–turbulent transition, near \(R \approx 500 \)
- \(R < R^{sc} \approx 280 \) stability: all perturbations are damped
- \(R^{sc} < R < R^{ca} \approx 500 \) convective instability:
 spatial exponential amplification of external perturbations
- \(R > R^{ca} \approx 500 \) absolute instability: perturbations grow at fixed \(r \)
 \(\rightsquigarrow \) self-sustained finite-amplitude fluctuations
 \(\rightsquigarrow \) nonlinear wavetrains \(\rightsquigarrow \) secondary instabilities

- Precise dynamics in transition region?
- Spatial distribution of weakly and fully nonlinear fluctuations?
- Characteristic frequencies?
- Sensitivity to external noise, to disk roughness?
- Controllability of natural dynamics?
Self-similar laminar basic flow

no characteristic length scale

\[U(r, z) = \begin{pmatrix} rU(z) \\ rV(z) \\ W(z) \end{pmatrix} \]

constant boundary layer thickness \(\delta = \sqrt{\frac{\nu}{\Omega}} \)

Weak radial development of basic flow

\[\frac{1}{R} = \frac{\text{boundary layer thickness}}{\text{typical radii of interest}} \ll 1 \]

Transition occurs at \(R \sim 500 \)

Local properties at given radial location \(R \) are then derived from

\[U(z; R) = \begin{pmatrix} R U(z) \\ R V(z) \\ W(z) \end{pmatrix} \]

- 3D flow, homogenous in \(\theta \) and \(r \)
- \(R \) effective local Reynolds number
Local linear dispersion relation

Separate total flow fields into basic and perturbation quantities as

$$U(z; R) + u(r, \theta, z, t).$$

Linearize governing equations and write small-amplitude perturbations in normal-mode form as

$$u(r, \theta, z, t) = u^\ell(z) \exp(\alpha r + \beta \theta - \omega t).$$

Solution of eigenvalue problem leads to

$$\omega = \Omega^\ell(\alpha, \beta; R)$$

with ω, α complex, β integer, R real.

Temporal growth rate

α real

Isolevels $\Omega^\ell_i = 0, 0.5, \ldots, 3.5$

Instability whenever $\Omega^\ell_i > 0$
Local absolute instability analysis

(Lingwood 1995)

Absolute frequency ω_0 is defined as the frequency observed at a fixed spatial location in the long-time linear response to an initial impulse.

Vanishing radial group velocity condition:

$$\omega_0(\beta; R) = \Omega^\ell(\alpha_0, \beta; R) \quad \text{with} \quad \frac{\partial \Omega^\ell}{\partial \alpha} = 0$$

$\omega_{0,i} < 0$ convective instability \leadsto perturbations propagate radially outwards

$\omega_{0,i} > 0$ absolute instability \leadsto perturbations grow at fixed radial location

Onset of absolute instability at $R^{ca} = 507.4$ and $\beta^{ca} = 68$.

Critical absolute frequency $\omega^{ca} = 50.5$.
Response to localized impulse

- amplified wavepacket is advected outwards in a spiralling trajectory
- inner boundary of wavepacket asymptotically reaches a critical radius
- turbulent régime prevails beyond this radius without ext. perturbation

However...

\(R^{ca} \) closely corresponds to experimentally observed transition radius

However:

Fully linearized dynamics does not display global instability
- Analytic derivation, Peake & Garrett (2002)

\(\sim \) Nonlinear régime must be accounted for to understand self-sustained behaviour
The rotating disk configuration displays all the desirable features required by the theory of “elephant” nonlinear global modes (Pier, Huerre & Chomaz, 2001)
“Elephant” nonlinear global mode

Basic advection

Stationary front at transition station CU/AU
- generates downstream propagating nonlinear wavetrain
- tunes entire system to global frequency

\[\omega^c_0 = \omega_0(R^c) \text{ with } \omega_0, i(R^c) = 0 \]

- AU region is a sufficient condition for nonlinear global instability

Predicted behaviour of the rotating disk flow

- in central CU region \(R < R^c \)
 unperturbed basic flow
- at marginal AU station \(R = R^c \simeq 507.4 \)
 stationary front of frequency \(\omega^c_0 \simeq 50.5 \)
- in outer AU region \(R > R^c \)
 finite-amplitude saturated spiral vortices

Questions:
- Do saturated waves exist in this configuration?
- Why is a turbulent state observed instead?
- What about secondary instabilities of the saturated vortices?
Local saturated crossflow vortices

Whenever $\Omega^\ell_i(\alpha, \beta; R) > 0$

\sim linear exponential temporal growth of spatially periodic perturbations

\sim nonlinear quadratic interactions produce higher harmonics

\sim amplitude saturation, finite-amplitude periodic wavetrain of the form

$$u(r, \theta, z, t) = \sum_n u_n(z) \exp ni(\alpha r + \beta \theta - \omega t)$$

real nonlinear frequency ω

- **Nonlinear dispersion relation**

$$\omega = \Omega^{n\ell}(\alpha, \beta; R)$$

Nonlinear waves at $\beta = 68$
Structure of finite-amplitude waves

At $R = 500$, $\beta = 68$, $\alpha = 0.35 \Rightarrow \omega = 50.5$

• new inflection points
• further instabilities

Secondary stability analysis

• Primary finite-amplitude equilibrium solution

 $u(r, \theta, z, t) = \sum u_n(z) \exp i(\alpha r + \beta \theta - \omega t)$

 is 2π-periodic in $\phi \equiv \alpha r + \beta \theta - \omega t$.

• Secondary (in)stability by Floquet theory
 perturbation in normal-mode form

 $\hat{u}(r, \theta, z, t) = \left(\sum \hat{u}_n(z) \exp i(\alpha r + \beta \theta - \omega t) \right) \exp i(\hat{\alpha} r + \hat{\beta} \theta - \hat{\omega} t)$

 $\hat{\alpha}$ secondary radial wavenumber (complex)
 $\hat{\beta}$ secondary azimuthal modenumber (integer)

• Secondary dispersion relation:

 $\hat{\omega} = \hat{\Omega}^\ell(\hat{\alpha}, \hat{\beta}; \alpha, \beta; R)$
Secondary absolute instability

Primary nonlinear structure affected by secondary disturbances only for secondary absolute instability.

Secondary absolute frequency $\hat{\omega}_0$ and wave number $\hat{\alpha}_0$ are obtained by a pinching condition in the complex $\hat{\alpha}$-plane (Brevdo & Bridges 1996):

$$\hat{\omega}_0(\hat{\beta}; \alpha, \beta; R) \equiv \hat{\Omega}^\ell(\hat{\alpha}_0, \hat{\beta}; \alpha, \beta; R)$$

with $\hat{\alpha}_0$ defined by

$$\frac{\partial \hat{\Omega}^\ell}{\partial \hat{\alpha}}(\hat{\alpha}_0, \hat{\beta}; \alpha, \beta; R) = 0$$

Secondary absolute growth rate

$$\hat{\omega}_{0,i} \equiv \text{Im} \, \hat{\omega}_0(\hat{\beta}; \alpha, \beta; R)$$

At onset of primary nonlinearity: $R = 508, \alpha = 0.35, \beta = 68$:

![Graph showing strong secondary absolute instability](image-url)
Revised self-sustained behaviour

- in central CU region $R < R^{ca}$
 unperturbed basic flow
- at marginal AU station $R^{ca} \approx 507$
 stationary front
- in outer AU region $R > R^{ca}$
 front generates nonlinear spiral vortices
 that are already absolutely unstable
- Transition to turbulent state
 immediately occurs at $R = R^{ca}$

Open-loop control

Goal and method

Delay transition to larger radius \rightarrow reduce energy losses, noise. . .

Low-tech method usable in practical situations:
- No real-time computations
- No real-time measurements
- No closed-loop control methods

Apply localized perturbations in the BL upstream of transition
\rightarrow Modify the naturally selected flow behaviour

Take advantage of primary BL instabilities
 to control secondary instabilities
Spatial response to localized harmonic forcing

One-dimensional spatially developing system (e.g., CGL equation)

\[X < X_f \quad \text{upstream exponential decay} \]

\[X = X_f \quad \text{ localized forcing of frequency } \omega_f \]

\[X_f < X < X_{nl} \quad \text{downstream exponential growth} \]

\[X = X_{nl} \quad \text{response reaches finite amplitude} \]

\[X_{nl} < X < X_n \quad \text{finite-amplitude response} \]

Forced response vs. self-sustained oscillations

source of self-sustained oscillations located at \(X^{ca} \)

front tunes entire system
Control of natural oscillations

Numerical simulation of 1D complex Ginzburg–Landau equation with spatially varying coefficients

- Natural oscillations at $\omega_0^{ca} = 0.4$
- Forcing at $\omega_f = 1$ switched on at $t = 0$

Effective control:
When forced response reaches finite amplitude upstream of the front, this front is overwhelmed and the intrinsic oscillations are replaced by the forced response.

Control strategy applied to the rotating-disk flow

Modify primary nonlinear state to avoid secondary instability.

The transition station $R^{ca} = 507$ acts as a source for the naturally selected spiral vortices.

- Perturb this source to replace the natural state by spiral vortices of our own choice.
- Apply localized periodic forcing at R_f in the convect. unstable region:
 - linear spatial response for $R_f < R < R_{nl}$,
 - nonlinear spatial response for $R > R_{nl}$,
 - control dominates whenever $R_{nl} < R^{ca}$.

Available control parameters: frequency ω_f and azimuthal modenumber β_f.

Careful choice of ω_f and β_f delays secondary instability.
Secondary absolute instability features

Secondary absolute growth rate at $R = 500$ by Floquet analysis of primary NL spiral vortex $[\alpha$: radial wavenumber β: azimuthal modenumber]

naturally selected vortices: $\beta = 68$, $\alpha = 0.35$, $\omega = 50.5$
$\hat{\omega}_{0,i} = 0.55$

control at: $\beta = 34$, $\alpha = 0.57$, $\omega = 46$
$\hat{\omega}_{0,i} = -1.06$

Transition delay

Primary finite-amplitude spiral waves follow the nonlinear spatial branch $\alpha^{nl}(R; \omega_f, \beta_f)$, determined by forcing frequency ω_f and modenumber β_f. Evolution of secondary absolute growth rate $\hat{\omega}_{0,i}^{\text{max}}$ along these branches

Onset of sec. absolute instability may be postponed to nearly $R = 600$.
Transition delay

Apply harm. forcing at R_f to replace intrinsic behaviour by spatial response.

Choose forcing characteristics to delay sec. inst. (and transition) to R^*.

Conclusions

- Complete map obtained of primary and secondary stability properties
- Control strategy:
 Apply localized harmonic forcing upstream of transition
 \rightarrow natural behaviour suppressed, entire system tuned to ext. forcing
 \rightarrow secondary instability delayed by about 100 boundary layer units
- Low-resources control:
 control parameters determined only once, no real-time measurements or computations
- Low-cost control:
 by exponential growth of spatial response in central region