References Andrew Swan

M. Bezem, T. Coquand, and S. Huber, A Model of Type Theory in Cubical
Sets.  19th International Conference on Types for Proofs and Programs
(TYPES 2013) volume 26 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 107-128, 2014.

R. Garner, Understanding the small object argument,
 Applied Categorical Structures, 17(3):247-285, 2009.

S. Huber, A Model of Type Theory in Cubical Sets.  PhD thesis,
 University of Gothenburg, 2015.

A. M. Pitts, Nominal Sets: Names and Symmetry in Computer Science,
  volume 57 of Cambridge Tracts in Theoretical Computer Science.

A. M. Pitts, An equivalent presentation of the
 Bezem-Coquand-Huber category of cubical sets.  arXiv:1401.7807,
 January 2014.

A. M. Pitts.  Nominal presentation of cubical sets models of type
 theory.  20th International Conference on Types for Proofs and
 Programs (TYPES 2014), Leibniz International Proceedings in
 Informatics (LIPIcs).  preprint at

E. Riehl.  Algebraic model structures.  New York Journal of
 Mathematics, 17:173-231, 2011.

A. W. Swan.  An algebraic weak factorisation system on 01-substitution
 sets: a constructive proof.  arXiv:1409.1829, September 2014.

Share this page:

Contact details

Department of Mathematics
University of Leicester
University Road
Leicester LE1 7RH
United Kingdom

Tel.: +44 (0)116 229 7407

Campus Based Courses

Postgraduate Taught:

Postgraduate Research:

Distance Learning Course  

Actuarial Science:

DL Study

Student complaints procedure

AccessAble logo

The University of Leicester is committed to equal access to our facilities. DisabledGo has detailed accessibility guides for College House and the Michael Atiyah Building.