Abstract Nicola Gambino

Title: Towards a constructive simplicial model of Univalent Foundations
Abstract: We provide a partial solution to the problem of defining a constructive version of Voevodsky's simplicial model of univalent foundations. For this, we prove constructive counterparts of the necessary results of simplicial homotopy theory, building on the constructive version of the Kan-Quillen model structure established by the second-named author. In particular, we show that dependent products along fibrations with cofibrant domains preserve fibrations, establish the weak equivalence extension property for weak equivalences between fibrations with cofibrant domain and define a univalent classifying fibration for small fibrations between bifibrant objects. These results allow us to define a comprehension category supporting identity types, Σ-types, Π-types and a univalent universe, leaving only a coherence question to be addressed. This is joint work with Simon Henry.

Share this page:

Contact details

Department of Mathematics
University of Leicester
University Road
Leicester LE1 7RH
United Kingdom

Tel.: +44 (0)116 229 7407

Campus Based Courses

Undergraduate: mathsug@le.ac.uk
Postgraduate Taught: mathspg@le.ac.uk

Postgraduate Research: pgrmaths@le.ac.uk

Distance Learning Course  

Actuarial Science:

DL Study

Student complaints procedure

AccessAble logo

The University of Leicester is committed to equal access to our facilities. DisabledGo has detailed accessibility guides for College House and the Michael Atiyah Building.