Graded Blocks of Group Algebras

Dusko Bogdanic

Mathematical Institute
University of Oxford

University of Leicester, 21 June 2010
Motivation

Theorem (Rouquier, 2001)

Let $D^b(A\text{-mod}) \cong D^b(B\text{-mod})$. If A is graded, then B is graded.
Motivation

Theorem (Rouquier, 2001)

Let $D^b(A\text{-mod}) \cong D^b(B\text{-mod})$. If A is graded, then B is graded.

Problem

How do we effectively transfer gradings between derived equivalent algebras A and B?
Motivation

Theorem (Rouquier, 2001)

Let $D^b(A\text{-mod}) \cong D^b(B\text{-mod})$. If A is graded, then B is graded.

Problem

How do we effectively transfer gradings between derived equivalent algebras A and B?

If the grading on A has some interesting properties, does the resulting grading on B have the same properties?
Overview

1 Preliminaries
 ▶ Brauer tree algebras
 ▶ Graded algebras

2 The tilting complex

3 Example

4 The general case

5 Properties of the resulting grading

6 Classification of gradings
Brauer tree algebras

- $\Gamma \rightsquigarrow$ finite connected tree with e edges.

- Γ is a Brauer tree of type (m, e) if given:
 - Cyclic ordering of the edges adjacent to a given vertex,
 - The exceptional vertex v, to whom we assign the multiplicity m.

[$Dusko Bogdanic (Oxford)$] [Grad Block of Group Algebras] [Leicester, 21 June 2010] [5/27]
Brauer tree algebras

- $\Gamma \rightsquigarrow$ finite connected tree with e edges.
- Γ is a Brauer tree of type (m, e) if given:
 - Cyclic ordering of the edges adjacent to a given vertex,
 - The exceptional vertex v, to whom we assign the multiplicity m.

Dusko Bogdanic (Oxford)

Graded Blocks of Group Algebras

Leicester, 21 June 2010

5 / 27
Brauer tree algebras

- A is a Brauer tree algebra associated with Γ if
 - the isomorphism classes of simple A-modules are in one-to-one correspondence with the edges of Γ,
Brauer tree algebras

- A is a Brauer tree algebra associated with Γ if
 - the isomorphism classes of simple A-modules are in one-to-one correspondence with the edges of Γ,
 - Let a part of Γ be

\[
\begin{array}{c}
\circ \\
V_1 \quad U_r \\
S \\
V_t \quad U_1 \\
\circ
\end{array}
\]
A is a Brauer tree algebra associated with Γ if

- the isomorphism classes of simple A-modules are in one-to-one correspondence with the edges of Γ,
- Let a part of Γ be

```
V_1 \quad U_r
```
```
V_t \quad U_1
```

The structure of P_S is given by

$$P_S = \begin{array}{ccc}
S & V & U \\
S & S & S
\end{array}$$
Brauer tree algebras

- A is a Brauer tree algebra associated with Γ if
 - the isomorphism classes of simple A-modules are in one-to-one correspondence with the edges of Γ,
 - Let a part of Γ be

\[
\begin{array}{ccc}
\circ & \circ & \circ \\
V_1 & \circ & U_r \\
\circ & \circ & \circ \\
V_t & S & U_1 \\
\circ & \circ & \circ
\end{array}
\]

The structure of P_S is given by

\[
P_S = \begin{array}{ccc}
S \\
V \\
U \\
S
\end{array}
\]

- $V \sim V_1, V_2, \ldots, V_t,$
Brauer tree algebras

- A is a Brauer tree algebra associated with Γ if
 - the isomorphism classes of simple A-modules are in one-to-one correspondence with the edges of Γ,
 - Let a part of Γ be

The structure of P_S is given by

\[
P_S = \begin{array}{ccc}
S & \quad & U \\
V & \quad & S \\
\end{array}
\]

- $V \sim V_1, V_2, \ldots, V_t$,
- $U \sim U_1, U_2, \ldots, U_r; S, U_1, U_2, \ldots, U_r; \ldots; S, U_1, U_2, \ldots, U_r.$
Brauer tree algebras

- Γ is of type $(2, 4)$
Brauer tree algebras

- Γ is of type $(2, 4)$

\[P_{S_1} = \begin{array}{ccc} S_1 & S_2 & S_3 \\ S_2 & S_1 & S_4 \end{array}, \quad P_{S_2} = S_1, \quad P_{S_3} = \begin{array}{ccc} S_3 & S_4 & S_2 \\ S_2 & S_3 & S_1 \end{array} \]
Brauer tree algebras

- The Brauer star of type \((m, e)\)
Brauer tree algebras

- The Brauer star of type \((m, e)\)

- The projective indecomposable module \(P_j\) is uniserial.
Brauer tree algebras

- Any two Brauer tree algebras associated with the same Brauer tree Γ and defined over the same field k are Morita equivalent.

- A basic Brauer tree algebra corresponding to a Brauer tree Γ is isomorphic to the algebra kQ/I.
Any two Brauer tree algebras associated with the same Brauer tree Γ and defined over the same field k are Morita equivalent.

A basic Brauer tree algebra corresponding to a Brauer tree Γ is isomorphic to the algebra kQ/I.

Q and I are easily constructed from Γ.

$A_\Gamma := kQ/I$
Graded algebras

Definition

A is a **graded algebra** if A is the direct sum of subspaces $A = \bigoplus_{i \in \mathbb{Z}} A_i$, such that $A_i A_j \subset A_{i+j}$, $i, j \in \mathbb{Z}$.
Graded algebras

Definition

A is a **graded algebra** if A is the direct sum of subspaces $A = \bigoplus_{i \in \mathbb{Z}} A_i$, such that $A_i A_j \subset A_{i+j}$, $i, j \in \mathbb{Z}$.

- $a_i \in A_i \rightarrow \deg(a_i) = i$
- If $A_i = 0$ for $i < 0$, then A is positively graded.
Graded algebras

Definition

A is a graded algebra if A is the direct sum of subspaces $A = \bigoplus_{i \in \mathbb{Z}} A_i$, such that $A_i A_j \subset A_{i+j}$, $i, j \in \mathbb{Z}$.

- $a_i \in A_i \leadsto \deg(a_i) = i$
- If $A_i = 0$ for $i < 0$, then A is positively graded.

Definition

An A-module M is graded if $M = \bigoplus_{i \in \mathbb{Z}} M_i$, and $A_i M_j \subset M_{i+j}$.

N$_\langle n \rangle$ denotes the graded module given by $N_j = M_{n+j}$, $j \in \mathbb{Z}$.

Dusko Bogdanic (Oxford)
Graded algebras

Definition

A is a **graded algebra** if A is the direct sum of subspaces $A = \bigoplus_{i \in \mathbb{Z}} A_i$, such that $A_i A_j \subset A_{i+j}$, $i, j \in \mathbb{Z}$.

- $a_i \in A_i \leadsto \deg(a_i) = i$
- If $A_i = 0$ for $i < 0$, then A is positively graded.

Definition

An A-module M is graded if $M = \bigoplus_{i \in \mathbb{Z}} M_i$, and $A_i M_j \subset M_{i+j}$.

- $N = M\langle n \rangle$ denotes the graded module given by $N_j = M_{n+j}$, $j \in \mathbb{Z}$.

Definition

An A-module homomorphism f between two graded modules M and N is a homomorphism of graded modules if $f(M_i) \subset N_i$, for all $i \in \mathbb{Z}$.
Graded algebras

- $X = (X^i, d^i)_{i \in \mathbb{Z}}$ is a graded complex if X^i is a graded module, d^i is a homomorphism of graded A-modules, for all i.

- $f = \{f^i\}_{i \in \mathbb{Z}} \in \text{Hom}_A(X, Y)$ is a homomorphism of graded complexes if f^i is a homomorphism of graded modules.

- $X_{\langle j \rangle}$ denotes the complex $\left(X_{\langle j \rangle}^i \right)_{i \in \mathbb{Z}}$:

 - $X_{\langle j \rangle}^i = X^i$ for all i.
 - $d^i_{X_{\langle j \rangle}} = d^i$.

- Theorem: If X and Y are graded A-modules (or complexes), then

 $$\text{Hom}_A(X, Y) \cong \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{A_{\text{gr}}}(X_{\langle i \rangle}, Y_{\langle i \rangle}).$$

- $\text{Hom}_{A_{\text{gr}}}(X, Y) := \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{A_{\text{gr}}}(X_{\langle i \rangle}, Y_{\langle i \rangle})$. The subspace $H_{\text{t}}(X, Y)$ of zero homotopic maps is homogeneous.

- From this we get a grading on $\text{Hom}_{K_{\text{b}}}(P_{A_{\text{gr}}}(X, Y))$:

 $$\text{Hom}_{K_{\text{b}}}(P_{A_{\text{gr}}}(X, Y)) := \text{Hom}_{A_{\text{gr}}}(X, Y) / H_{\text{t}}(X, Y).$$

Dusko Bogdanic (Oxford)
Graded algebras

- $X = (X^i, d^i)_{i \in \mathbb{Z}}$ is a graded complex if X^i is a graded module, d^i is a homomorphism of graded A-modules, for all i.
- $f = \{f^i\}_{i \in \mathbb{Z}} \in \text{Hom}_A(X, Y)$ is a homomorphism of graded complexes if f^i is a homomorphism of graded modules.
Graded algebras

- $X = (X^i, d^i)_{i \in \mathbb{Z}}$ is a graded complex if X^i is a graded module, d^i is a homomorphism of graded A-modules, for all i.
- $f = \{f^i\}_{i \in \mathbb{Z}} \in \text{Hom}_A(X, Y)$ is a homomorphism of graded complexes if f^i is a homomorphism of graded modules.
- $X \langle j \rangle$ denotes the complex $(X \langle j \rangle)^i := X^i \langle j \rangle$ and $d^i_{X \langle j \rangle} := d^i$.
Graded algebras

- $X = (X^i, d^i)_{i \in \mathbb{Z}}$ is a graded complex if X^i is a graded module, d^i is a homomorphism of graded A-modules, for all i.
- $f = \{f^i\}_{i \in \mathbb{Z}} \in \text{Hom}_A(X, Y)$ is a homomorphism of graded complexes if f^i is a homomorphism of graded modules.
- $X\langle j \rangle$ denotes the complex $(X\langle j \rangle)^i := X^i\langle j \rangle$ and $d^i_{X\langle j \rangle} := d^i$.

Theorem

If X and Y are graded A-modules (or complexes), then

$$\text{Hom}_A(X, Y) \cong \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{A-\text{gr}}(X, Y\langle i \rangle).$$
Graded algebras

- \(X = (X^i, d^i)_{i \in \mathbb{Z}} \) is a graded complex if \(X^i \) is a graded module, \(d^i \) is a homomorphism of graded \(A \)-modules, for all \(i \).
- \(f = \{ f^i \}_{i \in \mathbb{Z}} \in \text{Hom}_A(X, Y) \) is a homomorphism of graded complexes if \(f^i \) is a homomorphism of graded modules.
- \(X\langle j \rangle \) denotes the complex \((X\langle j \rangle)^i := X^i\langle j \rangle \) and \(d_{X\langle j \rangle}^i := d^i \).

Theorem

If \(X \) and \(Y \) are graded \(A \)-modules (or complexes), then

\[
\text{Hom}_A(X, Y) \cong \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{A-\text{gr}}(X, Y\langle i \rangle).
\]

\[
\text{Hom}_{gr} A(X, Y) := \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{A-\text{gr}}(X, Y\langle i \rangle)
\]
Graded algebras

- $X = (X^i, d^i)_{i \in \mathbb{Z}}$ is a graded complex if X^i is a graded module, d^i is a homomorphism of graded A-modules, for all i.
- $f = \{f^i\}_{i \in \mathbb{Z}} \in \text{Hom}_A(X, Y)$ is a homomorphism of graded complexes if f^i is a homomorphism of graded modules.
- $X \langle j \rangle$ denotes the complex $(X \langle j \rangle)^i := X^i \langle j \rangle$ and $d^i_{X \langle j \rangle} := d^i$.

Theorem

If X and Y are graded A-modules (or complexes), then

$$\text{Hom}_A(X, Y) \cong \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{A-\text{gr}}(X, Y \langle i \rangle).$$

- $\text{Hom}_{A-\text{gr}}(X, Y) := \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{A-\text{gr}}(X, Y \langle i \rangle)$
- The subspace $Ht(X, Y)$ of zero homotopic maps is homogeneous.
Graded algebras

- $X = (X^i, d^i)_{i \in \mathbb{Z}}$ is a graded complex if X^i is a graded module, d^i is a homomorphism of graded A-modules, for all i.
- $f = \{f^i\}_{i \in \mathbb{Z}} \in \text{Hom}_A(X, Y)$ is a homomorphism of graded complexes if f^i is a homomorphism of graded modules.
- $X \langle j \rangle$ denotes the complex $(X \langle j \rangle)^i := X^i \langle j \rangle$ and $d^i_{X \langle j \rangle} := d^i$.

Theorem

If X and Y are graded A-modules (or complexes), then

$$\text{Hom}_A(X, Y) \cong \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{A-\text{gr}}(X, Y \langle i \rangle).$$

- $\text{Hom}_{A}(X, Y) := \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{A-\text{gr}}(X, Y \langle i \rangle)$
- The subspace $Ht(X, Y)$ of zero homotopic maps is homogeneous.
- From this we get a grading on $\text{Hom}_{K^b(P_A)}(X, Y)$

$$\text{Homgr}_{K^b(P_A)}(X, Y) := \text{Homgr}_A(X, Y)/Ht(X, Y)$$
The tilting complex

Theorem (Rickard 1989)

Up to derived equivalence, a Brauer tree algebra is determined by the number of edges and the multiplicity of the exceptional vertex.
The tilting complex

Theorem (Rickard 1989)

Up to derived equivalence, a Brauer tree algebra is determined by the number of edges and the multiplicity of the exceptional vertex.

- $\Gamma \rightsquigarrow$ an arbitrary Brauer tree of type (m, e)
- $S \rightsquigarrow$ the Brauer star of type (m, e)
- $D^b(A_S\text{-mod}) \cong D^b(A_{\Gamma}\text{-mod})$

A_S is tightly graded, i.e. $A_S \cong \bigoplus_{i=0}^{\infty} (\text{rad} A_S)^i / (\text{rad} A_S)^{i+1}$.

A_{Γ} is graded. Question: What is the corresponding grading on A_{Γ}?
The tilting complex

Theorem (Rickard 1989)

Up to derived equivalence, a Brauer tree algebra is determined by the number of edges and the multiplicity of the exceptional vertex.

- $\Gamma \leadsto$ an arbitrary Brauer tree of type (m, e)
- $S \leadsto$ the Brauer star of type (m, e)
- $D^b(A_S\text{-mod}) \cong D^b(A_\Gamma\text{-mod})$
- A_S is tightly graded, i.e. $A_S \cong \bigoplus_{i=0}^{\infty} (\text{rad } A_S)^i/(\text{rad } A_S)^{i+1}$.

Dusko Bogdanic (Oxford)

Graded Blocks of Group Algebras

Leicester, 21 June 2010
The tilting complex

Theorem (Rickard 1989)

Up to derived equivalence, a Brauer tree algebra is determined by the number of edges and the multiplicity of the exceptional vertex.

- $\Gamma \leadsto$ an arbitrary Brauer tree of type (m, e)
- $S \leadsto$ the Brauer star of type (m, e)
- $D^b(A_S\text{-mod}) \cong D^b(A_\Gamma\text{-mod})$
- A_S is tightly graded, i.e. $A_S \cong \bigoplus_{i=0}^{\infty} (\text{rad } A_S)^i / (\text{rad } A_S)^{i+1}$.
- A_Γ is graded.
The tilting complex

Theorem (Rickard 1989)

Up to derived equivalence, a Brauer tree algebra is determined by the number of edges and the multiplicity of the exceptional vertex.

- $\Gamma \rightsquigarrow$ an arbitrary Brauer tree of type (m, e)
- $S \rightsquigarrow$ the Brauer star of type (m, e)
- $D^b(A_S\text{-mod}) \cong D^b(A_\Gamma\text{-mod})$
- A_S is tightly graded, i.e. $A_S \cong \bigoplus_{i=0}^{\infty} (\text{rad } A_S)^i / (\text{rad } A_S)^{i+1}$.
- A_Γ is graded.

Question

What is the corresponding grading on A_Γ?
The tilting complex

- There exist a tilting complex T such that $\text{End}_{K^b(P_{A_S})}(T)^{op} \cong A_\Gamma$.

Dusko Bogdanic (Oxford)
There exist a tilting complex T such that $\text{End}_{K^b(P_{A_S})}(T)^{op} \cong A_\Gamma$.

T can be constructed by taking Green's walk around Γ.

There are many such tilting complexes (studied by Rickard, Schaps & Zakay-Illouz).
The tilting complex

- There exist a tilting complex T such that $\text{End}_{K^b(P_{A_S})}(T)^{op} \cong A_\Gamma$.
- T can be constructed by taking Green’s walk around Γ.
- There are many such tilting complexes (studied by Rickard, Schaps & Zakay-Illouz).
- T is a direct sum of e indecomposable complexes with at most two non-zero terms.
- The summand T_i corresponds to the edge S_i of Γ.
Calculating \(\text{End}_{K^b(P_A S)}(T)^{op} \)

- If \(T \) is a graded complex, then \(\text{Endgr}_{K^b(P_A S)}(T)^{op} \) is a graded algebra.
Calculating $\text{End}_{K^b(P_{AS})}(T)^{op}$

- If T is a graded complex, then $\text{Endgr}_{K^b(P_{AS})}(T)^{op}$ is a graded algebra.

- When identifying $\text{End}_{K^b(P_{AS})}(T)^{op}$ with A_Γ, $\text{Hom}_{K^b(P_{AS})}(T_i, T_j)$ corresponds to the space spanned by all paths starting at i and ending at j in the quiver of A_Γ.

"Theorem (B. 2007)"
Calculating $\text{End}_{K^b(P_{A_S})}(T)^{op}$

- If T is a graded complex, then $\text{Endgr}_{K^b(P_{A_S})}(T)^{op}$ is a graded algebra.
- When identifying $\text{End}_{K^b(P_{A_S})}(T)^{op}$ with A_Γ, $\text{Hom}_{K^b(P_{A_S})}(T_i, T_j)$ corresponds to the space spanned by all paths starting at i and ending at j in the quiver of A_Γ.

Theorem (B. 2007)

Let A_Γ be a basic Brauer tree algebra corresponding to an arbitrary Brauer tree Γ. Then there exists a positive grading on A_Γ.
Example
Example

\[S_1 \]
Example
Example
Example
Example
Example

T is the direct sum of:

\[
\begin{align*}
T_1 & : 0 \to P_1 \to 0 \\
T_2 & : 0 \to P_2 \to 0 \\
T_3 & : 0 \to P_3 \to 0 \\
T_4 & : 0 \to P_3 \to P_4\langle 5\rangle \to 0 \\
T_5 & : 0 \to P_3 \to P_5\langle 4\rangle \to 0 \\
T_6 & : 0 \to P_5\langle 4\rangle \to P_6\langle 9\rangle \to 0
\end{align*}
\]

- The differentials are maps of maximal ranks.
- This complex tilts from A_S to A_Γ: $\text{End}_{K^b(P_{AS})}(T) \cong A_\Gamma^{op}$.
- $\text{Homgr}_{K^b(P_{AS})}(T_i, T_j) \rightsquigarrow \bullet \xrightarrow{i, \alpha} \bullet$
Example
The general case

- Edges \(i \) and \(j \) of a Brauer tree \(\Gamma \) are adjacent to the same vertex.
- \(i \) and \(j \) are at the same distance from the exceptional vertex:
The general case

- Edges i and j of a Brauer tree Γ are adjacent to the same vertex.
- i and j are at the same distance from the exceptional vertex:

\[
\begin{array}{c}
\bullet \\
S_i & \downarrow \alpha \\
S_j & \\
\end{array}
\quad \begin{array}{c}
\bullet \\
S_i & \downarrow \beta \\
S_j & \\
\end{array}
\]

- If $i > j$, then $\text{deg}(\alpha) = i - j$. If $i < j$, then $\text{deg}(\alpha) = e - (j - i)$.
- $\text{deg}(\beta) = 0$.
The general case

- The distance of one the edges, say i, is one less than the distance of j:

\[S_l \leadsto S_i \leadsto S_f \]

\[S_j \leadsto S_f \leadsto S_j \]

Dusko Bogdanic (Oxford) Graded Blocks of Group Algebras Leicester, 21 June 2010 20 / 27
The general case

- The distance of one of the edges, say i, is one less than the distance of j:

 \[\deg(\alpha) = m; \]
 \[\deg(\beta) = 0. \]
The general case

\[S_{11} \longrightarrow S_{10} \longrightarrow S_9 \bullet S_1 \longrightarrow S_6 \longrightarrow S_7 \]

\[S_8 \]

\[S_2 \]

\[S_3 \quad S_5 \]

\[S_4 \]
The general case
The subalgebra A_0
The subalgebra A_0

- The quiver of A_0 is a union of directed rooted trees.
- A_0 is a quasi-hereditary algebra.
The subalgebra A_0

- The quiver of A_0 is a union of directed rooted trees.
- A_0 is a quasi-hereditary algebra.
- The global dimension of A_0 is bounded by the length (as a rooted tree) of the quiver of A_0.
- From A_0 we can recover A_{Γ}.
The group $\text{Out}^K(A_\Gamma)$

- Gradings are controlled by $\text{Out}(A)$.
The group $\text{Out}^K(A_\Gamma)$

- Gradings are controlled by $\text{Out}(A)$.
- $A = \bigoplus_{i \in \mathbb{Z}} A_i \leftrightarrow \pi : \mathbb{G}_m \to \text{Out}(A)$.

A "good" case is when the maximal tori of $\text{Out}(A)$ are isomorphic to \mathbb{G}_m. In this case there is essentially unique grading on A.

Dusko Bogdanic (Oxford)
Graded Blocks of Group Algebras
Leicester, 21 June 2010
26 / 27
The group $\text{Out}^K(A_\Gamma)$

- Gradings are controlled by $\text{Out}(A)$.
- $A = \bigoplus_{i \in \mathbb{Z}} A_i \iff \pi : G_m \rightarrow \text{Out}(A)$.
- A ”good” case is when the maximal tori of $\text{Out}(A)$ are isomorphic to G_m.
The group $\text{Out}^K(A_\Gamma)$

- Gradings are controlled by $\text{Out}(A)$.

- $A = \bigoplus_{i \in \mathbb{Z}} A_i \iff \pi : G_m \to \text{Out}(A)$.

- A ”good” case is when the maximal tori of $\text{Out}(A)$ are isomorphic to G_m.

- In this case there is essentially unique grading on A.

The group $\text{Out}^K(A_\Gamma)$

Theorem (B. 2008)

Let Γ be an arbitrary Brauer tree of type (m, e). Then

$$\text{Out}^K(A_\Gamma) \cong \text{Aut}(k[x]/(x^{m+1})).$$
The group $\text{Out}^K(A_\Gamma)$

Theorem (B. 2008)

Let Γ be an arbitrary Brauer tree of type (m, e). Then

$$\text{Out}^K(A_\Gamma) \cong \text{Aut}(k[x]/(x^{m+1})).$$

Corollary (B. 2008)

There is a unique grading on A_Γ up to graded Morita equivalence and rescaling.