Hamiltonian stationary Lagrangian tori in \mathbb{C}^2, revisited

Katrin Leschke

University of Leicester

"Riemann Surfaces, Harmonic Maps and Visualization"
Osaka 2008
Consider \mathbb{R}^4 with canonical complex structure J such that $\omega(.,.) = \langle J.,. \rangle$ where $\langle .,. \rangle$ is the scalar product on \mathbb{R}^4 and ω the standard symplectic form.
Lagrangian surfaces

- Consider \mathbb{R}^4 with canonical complex structure J such that $\omega(.,.) = < J.,. >$ where $< .,. >$ is the scalar product on \mathbb{R}^4 and ω the standard symplectic form.

- $V \in \text{Lag}(\mathbb{R}^4)$ Lagrangian subspace if and only if $\omega|_V = 0$.
Consider \mathbb{R}^4 with canonical complex structure J such that $\omega(.,.) = \langle J.,. \rangle$ where $\langle ., . \rangle$ is the scalar product on \mathbb{R}^4 and ω the standard symplectic form.

- $V \in \text{Lag}(\mathbb{R}^4)$ Lagrangian subspace if and only if $\omega|_V = 0$.

- An immersion $f : M \to \mathbb{R}^4$ of a Riemann surface M into $\mathbb{R}^4 = \mathbb{C}^2$ is called Lagrangian if $f^*\omega = 0$.
Consider \mathbb{R}^4 with canonical complex structure J such that $\omega(.,.) = \langle J.,. \rangle$ where $\langle .,. \rangle$ is the scalar product on \mathbb{R}^4 and ω the standard symplectic form.

- $V \in \text{Lag}(\mathbb{R}^4)$ Lagrangian subspace if and only if $\omega|_V = 0$.

- An immersion $f : M \to \mathbb{R}^4$ of a Riemann surface M into $\mathbb{R}^4 = \mathbb{C}^2$ is called Lagrangian if $f^*\omega = 0$.

- The Gauss map γ of a Lagrangian immersion has values in the space of Lagrangian subspaces $\text{Lag}(\mathbb{R}^4)$:

$$\gamma : M \to \text{Lag}(\mathbb{R}^4).$$
Lagrangian angle and Maslov form

$U(2)$ operates on $\text{Lag}(\mathbb{R}^4)$

$$\text{Lag}(\mathbb{R}^4) = U(2)/S0(2)$$
Lagrangian angle and Maslov form

\[U(2) \text{ operates on } \text{Lag}(\mathbb{R}^4) \]

\[\text{Lag}(\mathbb{R}^4) = U(2)/S0(2) \]

thus we can define

\[s = \det \circ \gamma : M \rightarrow S^1. \]
Lagrangian angle and Maslov form

\[U(2) \text{ operates on } \text{Lag}(\mathbb{R}^4) \]

\[\text{Lag}(\mathbb{R}^4) = U(2)/S0(2) \]

thus we can define

\[s = \det \circ \gamma : M \rightarrow S^1. \]

The Lagrangian angle \(\beta \) is the lift of \(s \) to the universal cover:

\[s = e^{i\beta}. \]
Lagrangian angle and Maslov form

$U(2)$ operates on $\text{Lag}(\mathbb{R}^4)$

$$\text{Lag}(\mathbb{R}^4) = U(2)/S0(2)$$

thus we can define

$$s = \det \circ \gamma : M \to S^1.$$

The Lagrangian angle β is the lift of s to the universal cover:

$$s = e^{i\beta}.$$

Moreover, when $M = T^2 = \mathbb{C}/\Gamma$ is a 2-torus,

$$\beta(z) = 2\pi < \beta_0, z>$$

where $\beta_0 \in \Gamma^* \subset \mathbb{C}$ is called the Maslov form.
Variational problems

Consider Hamiltonian stationary Lagrangians (HSL), that is immersions $f : M \rightarrow \mathbb{C}^2$ which are critical points of the area functional

$$A(f) = \int_M |df|^2$$

under variations by Hamiltonian vector fields.
Variational problems

Consider Hamiltonian stationary Lagrangians (HSL), that is immersions \(f : M \rightarrow \mathbb{C}^2 \) which are critical points of the area functional

\[
\mathcal{A}(f) = \int_M |df|^2
\]

under variations by Hamiltonian vector fields.

Fact: \(f : M \rightarrow \mathbb{C}^2 \) is Hamiltonian stationary Lagrangian if and only if its Lagrangian angle map \(\beta \) is harmonic.
Results

- Oh: first and second variational formulae of the area functional
Results

- Oh: first and second variational formulae of the area functional
- Oh’s conjecture: Clifford torus minimizes the area in its Hamiltonian isotopy class
Results

- Oh: first and second variational formulae of the area functional
- Oh’s conjecture: Clifford torus minimizes the area in its Hamiltonian isotopy class
- Ilmanen, Anciaux: if there exists a smooth minimizer, it has to be the Clifford torus.
Results

- Oh: first and second variational formulae of the area functional
- Oh’s conjecture: Clifford torus minimizes the area in its Hamiltonian isotopy class
- Ilmanen, Anciaux: if there exists a smooth minimizer, it has to be the Clifford torus.
- Castro, Chen, Urbano: non-trivial examples.
Results

- Oh: first and second variational formulae of the area functional
- Oh’s conjecture: Clifford torus minimizes the area in its Hamiltonian isotopy class
- Ilmanen, Anciaux: if there exists a smooth minimizer, it has to be the Clifford torus.
- Castro, Chen, Urbano: non-trivial examples.
- Helein-Romon: complete description of HSL tori by Fourier polynomials; frequencies lie on a circle whose radius is governed by the Maslov class.
Left normal of a HSL surface

Let $f : M \rightarrow \mathbb{R}^4$ be a conformal immersion. Then the Gauss map of f is given by

$$(N, R) : M \rightarrow S^2 \times S^2 = Gr_2(\mathbb{R}^4).$$
Left normal of a HSL surface

Let $f : M \to \mathbb{R}^4$ be a conformal immersion. Then the Gauss map of f is given by

$$(N, R) : M \to S^2 \times S^2 = \text{Gr}_2(\mathbb{R}^4).$$

Helein-Romon: f Hamiltonian stationary Lagrangian iff the left normal $N : M \to S^1$ of f takes values in S^1 and is harmonic.
Left normal of a HSL surface

Let $f : M \to \mathbb{R}^4$ be a conformal immersion. Then the Gauss map of f is given by

$$(N, R) : M \to S^2 \times S^2 = Gr_2(\mathbb{R}^4).$$

Helein-Romon: f Hamiltonian stationary Lagrangian iff the left normal $N : M \to S^1$ of f takes values in S^1 and is harmonic. In fact, identifying $\mathbb{R}^4 = \mathbb{H}$ we can write

$$df = e^{\frac{j\beta}{2}} \, dz \, g$$
Left normal of a HSL surface

Let $f : M \to \mathbb{R}^4$ be a conformal immersion. Then the Gauss map of f is given by

$$(N, R) : M \to S^2 \times S^2 = Gr_2(\mathbb{R}^4).$$

Helein-Romon: $f \text{ Hamiltonian stationary Lagrangian iff the left normal } N : M \to S^1 \text{ of } f \text{ takes values in } S^1 \text{ and is harmonic.}$

In fact, identifying $\mathbb{R}^4 = \mathbb{H}$ we can write

$$df = e^{\frac{i\beta}{2}} dz g$$

and the left normal

$$N = e^{i\beta} i$$

satisfies $\ast df = N df.$
Spectral curves

- Helein-Romon: family of flat connections

\[d^\lambda = \lambda^{-2}\alpha_{-2} + \lambda^{-1}\alpha_{-1} + \alpha_0 + \lambda\alpha_1 + \lambda^2\alpha_2 \]

where \(\alpha_j \) lie in the eigenspaces of an order 4 automorphism of the Lie algebra of the group of symplectic isometries of \(\mathbb{R}^4 \).
Helein-Romon: family of flat connections

\[d^\lambda = \lambda^{-2} \alpha_{-2} + \lambda^{-1} \alpha_{-1} + \alpha_0 + \lambda \alpha_1 + \lambda^2 \alpha_2 \]

where \(\alpha_j \) lie in the eigenspaces of an order 4 automorphism of the Lie algebra of the group of symplectic isometries of \(\mathbb{R}^4 \).

(McIntosh-Romon) Associate minimal polynomial Killing field to define a spectral curve of \(f \).
Spectral curves

- Helein-Romon: family of flat connections

\[d^\lambda = \lambda^{-2} \alpha_2 + \lambda^{-1} \alpha_1 + \alpha_0 + \lambda \alpha_1 + \lambda^2 \alpha_2 \]

where \(\alpha_j \) lie in the eigenspaces of an order 4 automorphism of the Lie algebra of the group of symplectic isometries of \(\mathbb{R}^4 \).

(McIntosh-Romon) Associate minimal polynomial Killing field to define a spectral curve of \(f \).

Gives all weakly conformal Hamiltonian stationary Lagrangian tori.
Spectral curves

- Helein-Romon: family of flat connections

\[d^\lambda = \lambda^{-2} \alpha_2 + \lambda^{-1} \alpha_1 + \alpha_0 + \lambda \alpha_1 + \lambda^2 \alpha_2 \]

where \(\alpha_j \) lie in the eigenspaces of an order 4 automorphism of the Lie algebra of the group of symplectic isometries of \(\mathbb{R}^4 \).

(McIntosh-Romon) Associate minimal polynomial Killing field to define a spectral curve of \(f \).

Gives all weakly conformal Hamiltonian stationary Lagrangian tori

Gives Hamiltonian stationary Lagrangian tori with branch points and "no" control on the branch locus.
Spectral curves

- HSL tori $f : T^2 \to \mathbb{R}^4$ are conformal: have multiplier spectral curve (Schmidt, Taimanov, Bohle-L-Pedit-Pinkall)
HSL tori $f : T^2 \rightarrow \mathbb{R}^4$ are conformal: have multiplier spectral curve (Schmidt, Taimanov, Bohle-L-Pedit-Pinkall)

The left normal of a HSL torus $N : T^2 \rightarrow S^1$ is harmonic: have spectral curve of the harmonic left normal (Hitchin).
The family of flat connections

A map $N : M \rightarrow S^2 \subset \text{Im } \mathbb{H}$ is harmonic if and only if the family of complex connections

$$d^\mu = d + (\mu - 1)A^{1,0} + (\mu^{-1} - 1)A^{0,1}$$

on the trivial bundle \mathbb{H} is flat, where $A = \frac{1}{4}(\ast dN + NdN)$ and $\mu \in \mathbb{C}_*$.
The family of flat connections

A map $N : M \to S^2 \subset \text{Im } \mathbb{H}$ is harmonic if and only if the family of complex connections

$$d^\mu = d + (\mu - 1)A^{1,0} + (\mu^{-1} - 1)A^{0,1}$$

on the trivial bundle \mathbb{H} is flat, where $A = \frac{1}{4}(\ast dN + NdN)$ and $\mu \in \mathbb{C}_\ast$. Here $\mathbb{C} = \text{span}\{1, i\}$ where the complex structure i on \mathbb{H} is defined by right multiplication by i.
The family of flat connections

A map $N : M \to S^2 \subset \text{Im} \mathbb{H}$ is harmonic if and only if the family of complex connections

$$d\mu = d + (\mu - 1)A^{1,0} + (\mu^{-1} - 1)A^{0,1}$$

on the trivial bundle \mathbb{H} is flat, where $A = \frac{1}{4}(\ast dN + NdN)$ and $\mu \in \mathbb{C}_\ast$.

Here $\mathbb{C} = \text{span}\{1, I\}$ where the complex structure I on \mathbb{H} is defined by right multiplication by i.

Moreover, for $\omega \in \Omega^1$

$$\omega^{1,0} = \frac{1}{2}(\omega - I \ast \omega), \quad \omega^{0,1} = \frac{1}{2}(\omega + I \ast \omega)$$

denote the $(1, 0)$ and $(0, 1)$ parts with respect to the complex structure I.
Let $N : M \to S^2$ and d^μ the associated family of flat connections.
Let \(N : M \to S^2 \) and \(d^\mu \) the associated family of flat connections.

- If \(M = \mathbb{C}/\Gamma \) is a 2-torus, the parallel sections \(\alpha \in \Gamma(\mathbb{H}) \) of \(d^\mu \) with \textit{multiplier}, that is

\[
\gamma^* \alpha = \alpha h_\gamma, \quad \gamma \in \Gamma, \ h_\gamma \in \mathbb{C}_*, \ C = \text{span}\{1, i\},
\]

are the eigenvectors of the monodromy of \(d^\mu \).
Let $N : M \to S^2$ and d^μ the associated family of flat connections.

- If $M = \mathbb{C}/\Gamma$ is a 2-torus, the parallel sections $\alpha \in \Gamma(H)$ of d^μ with multiplier, that is
 \[\gamma^* \alpha = \alpha h_\gamma, \quad \gamma \in \Gamma, h_\gamma \in \mathbb{C}_*, \mathbb{C} = \text{span}\{1, i\}, \]

 are the eigenvectors of the monodromy of d^μ.

- The spectral curve Σ_e of $N : T^2 \to S^2$ is the normalization of
 \[\text{Eig} := \{ (\mu, h) \mid \exists \alpha : d^\mu \alpha = 0, \gamma^* \alpha = \alpha h_\gamma, \gamma \in \Gamma \} \]
The eigenline bundle [Hitchin]

Let \(N : M \to S^2 \) and \(d^\mu \) the associated family of flat connections.

- Generically, the space of parallel sections of \(d^\mu \) with a given multiplier is 1-dimensional, and one obtains the eigenline bundle \(\mathcal{E} \to \Sigma_e \).
Let $N : M \to S^2$ and d^μ the associated family of flat connections.

- Generically, the space of parallel sections of d^μ with a given multiplier is 1-dimensional, and one obtains the eigenline bundle $\mathcal{E} \to \Sigma_e$.
- The harmonic map can be reconstructed by linear flow in the Jacobian of Σ_e.
The spectral curve of the left normal

Let $f : T^2 \to \mathbb{C}^2$ be a Hamiltonian stationary Lagrangian torus with harmonic left normal N and family of flat connections $d\mu$.

Theorem (L-Romon, Moriya)

All parallel sections with multiplier can be computed explicitly:

$$\alpha_{\mu}^\pm = e^j\beta 2 \left(1 \mp k\sqrt{\mu - 1} \right)e^{\pm 2\pi \left(<A\mu, .> + i <C\mu, .> \right)}$$

with $A_{\mu} = i\beta_0 4 \left(\sqrt{\mu - 1} - \sqrt{\mu} \right)$, $C_{\mu} = \beta_0 4 \left(\sqrt{\mu - 1} + \sqrt{\mu} \right)$.

Katrin Leschke

HSL tori

HSL in \mathbb{C}^2

HSL tori

The Hitchin spectral curve

μ-Darboux transforms

The multiplier spectral curve

Darboux transforms
The spectral curve of the left normal

Let $f : T^2 \to \mathbb{C}^2$ be a Hamiltonian stationary Lagrangian torus with harmonic left normal N and family of flat connections d^μ.

Theorem (L-Romon, Moriya)

All parallel sections with multiplier can be computed explicitly:

$$
\alpha_\pm^\mu = e^{j \frac{\beta}{2} (1 \mp k \sqrt{\mu^{-1}})} e^{\pm 2\pi (\langle A^\mu, . \rangle + i \langle C^\mu, . \rangle)}
$$

*with $A^\mu = \frac{i \beta_0}{4} (\sqrt{\mu^{-1}} - \sqrt{\mu})$, $C^\mu = \frac{\beta_0}{4} (\sqrt{\mu^{-1}} + \sqrt{\mu})$.***
The spectral curve of the left normal

Let \(f : T^2 \rightarrow \mathbb{C}^2 \) be a Hamiltonian stationary Lagrangian torus with spectral curve \(\Sigma_e \) of its harmonic left normal \(N \).
The spectral curve of the left normal

Let \(f : T^2 \to \mathbb{C}^2 \) be a Hamiltonian stationary Lagrangian torus with spectral curve \(\Sigma_e \) of its harmonic left normal \(N \).

Theorem (L-Romon)

- \(\Sigma_e \) compactifies with \(\bar{\Sigma}_e = \mathbb{CP}^1 \).
The spectral curve of the left normal

Let \(f : T^2 \rightarrow \mathbb{C}^2 \) be a Hamiltonian stationary Lagrangian torus with spectral curve \(\Sigma_e \) of its harmonic left normal \(N \).

Theorem (L-Romon)

- \(\Sigma_e \) compactifies with \(\tilde{\Sigma}_e = \mathbb{CP}^1 \).
- \(\mu : \tilde{\Sigma}_e \rightarrow \mathbb{CP}^1, (\mu, h) \mapsto \mu \) is a 2-fold covering, branched over \(0, \infty \).
The spectral curve of the left normal

Let \(f : T^2 \to \mathbb{C}^2 \) be a Hamiltonian stationary Lagrangian torus with spectral curve \(\Sigma_e \) of its harmonic left normal \(N \).

Theorem (L-Romon)

- \(\Sigma_e \) compactifies with \(\bar{\Sigma}_e = \mathbb{CP}^1 \).
- \(\mu : \bar{\Sigma}_e \to \mathbb{CP}^1, (\mu, h) \mapsto \mu \) is a 2-fold covering, branched over \(0, \infty \).
- The eigenline bundle \(\mathcal{E} \) extends holomorphically to \(\bar{\Sigma}_e \).
The spectral curve of the left normal

Let \(f : T^2 \to \mathbb{C}^2 \) be a Hamiltonian stationary Lagrangian torus with spectral curve \(\Sigma_e \) of its harmonic left normal \(N \).

Theorem (L-Romon)

- \(\Sigma_e \) compactifies with \(\bar{\Sigma}_e = \mathbb{CP}^1 \).
- \(\mu : \bar{\Sigma}_e \to \mathbb{CP}^1, (\mu, h) \mapsto \mu \) is a 2-fold covering, branched over 0, \(\infty \).
- The eigenline bundle \(\mathcal{E} \) extends holomorphically to \(\bar{\Sigma}_e \).
- Let \(J \in \Gamma(\text{End}(\mathbb{H})) \), \(J^2 = -1 \), be the complex structure given by the quaternionic extension of

\[
J|_{\mathcal{E}_{x_\infty}} = I|_{\mathcal{E}_{x_\infty}}, \quad \mu(x_\infty) = \infty.
\]
Lef \(f : T^2 \to \mathbb{C}^2 \) be a Hamiltonian stationary Lagrangian torus with spectral curve \(\Sigma_e \) of its harmonic left normal \(N \).

Theorem (L-Romon)

- \(\Sigma_e \) compactifies with \(\bar{\Sigma}_e = \mathbb{CP}^1 \).
- \(\mu : \bar{\Sigma}_e \to \mathbb{CP}^1, (\mu, h) \mapsto \mu \) is a 2-fold covering, branched over 0, \(\infty \).
- *The eigenline bundle* \(\mathcal{E} \) extends holomorphically to \(\bar{\Sigma}_e \).
- Let \(J \in \Gamma(\text{End}(\mathbb{H})) \), \(J^2 = -1 \), be the complex structure given by the quaternionic extension of
 \[
 J|_{\mathcal{E}_{x_{\infty}}} = l|_{\mathcal{E}_{x_{\infty}}}, \quad \mu(x_{\infty}) = \infty.
 \]

Then \(J \) is in fact the complex structure given by left multiplication by \(N \).
\(\mu \)-Darboux transforms

Let \(f : M \to \mathbb{C}^2 \), be a Hamiltonian stationary Lagrangian torus with harmonic left normal \(N \).

Theorem (L-Romon)

Let \(\alpha \in \Gamma(\mathbb{H}) \) be a parallel section of \(d^\mu \) and put

\[
T^{-1} = \frac{1}{2} (N\alpha (a - 1)\alpha^{-1} + \alpha b \alpha^{-1})
\]

\[
a = \frac{\mu + \mu^{-1}}{2}, \quad b = i \frac{\mu^{-1} - \mu}{2}.
\]
Let $f : M \to \mathbb{C}^2$, be a Hamiltonian stationary Lagrangian torus with harmonic left normal N.

Theorem (L-Romon)

Let $\alpha \in \Gamma(\mathbb{H})$ be a parallel section of d^μ and put

$$T^{-1} = \frac{1}{2} (N\alpha(a-1)\alpha^{-1} + \alpha b\alpha^{-1})$$

$$a = \frac{\mu + \mu^{-1}}{2}, \quad b = i\frac{\mu^{-1} - \mu}{2}.$$

Then

$$\hat{N} = -TNT^{-1}$$

is a harmonic map $\hat{N} : M \to S^2$ of M into the 2-sphere.
\(\mu\)-Darboux transforms

Let \(f : M \rightarrow \mathbb{C}^2\), be a Hamiltonian stationary Lagrangian torus with harmonic left normal \(N\).

Theorem (L-Romon)

Let \(\alpha\) be a parallel section with multiplier and put

\[
T^{-1} = \frac{1}{2} (N \alpha (a - 1) \alpha^{-1} + \alpha b \alpha^{-1})
\]

\[
a = \frac{\mu + \mu^{-1}}{2}, \quad b = i \frac{\mu^{-1} - \mu}{2}.
\]
μ-Darboux transforms

Let $f : M \to \mathbb{C}^2$, be a Hamiltonian stationary Lagrangian torus with harmonic left normal N.

Theorem (L-Romon)

Let α be a parallel section with multiplier and put

$$T^{-1} = \frac{1}{2}(N\alpha(a - 1)\alpha^{-1} + \alpha b\alpha^{-1})$$

$$a = \frac{\mu + \mu^{-1}}{2}, \quad b = i\frac{\mu^{-1} - \mu}{2}.$$

Then T^{-1} is again globally defined and

$$\hat{N} = -TNT^{-1}$$

is a harmonic map $\hat{N} : M \to S^2$ from M into the 2-sphere.
μ-Darboux transforms

Let $f : T^2 \to \mathbb{C}^2$, be a Hamiltonian stationary Lagrangian torus with harmonic left normal N and $df = e^{\frac{j}{2} \beta} dz g$.

Theorem (L-Romon)

If $\alpha \in \Gamma(\mathbb{H})$ is a parallel section with multiplier, than \hat{N} is the left normal of a HSL torus

$$\hat{f} = f + TH^{-1},$$

where $H = \pi g^{-1} \bar{\beta}_0 e^{\frac{j}{2} \beta} k$.
Let $f : T^2 \to \mathbb{C}^2$, be a Hamiltonian stationary Lagrangian torus with harmonic left normal N and $df = e^{\frac{i\beta}{2}} dzg$.

Theorem (L-Romon)

If $\alpha \in \Gamma(\mathbb{H})$ is a parallel section with multiplier, than \hat{N} is the left normal of a HSL torus

$$\hat{f} = f + TH^{-1},$$

where $H = \pi g^{-1} \beta_0 e^{\frac{i\beta}{2}} k$.

We call \hat{f} a **μ-Darboux transform** of f.
Remark

- *Locally, a μ-Darboux transform is always at least constrained Willmore*.

\[
\textit{constrained Willmore}.
\]
Remark

- Locally, a μ-Darboux transform is always at least constrained Willmore.

- A similar theorem holds both for μ-Darboux transforms of CMC tori (Carberry-L-Pedit), and (constrained) Willmore tori (Bohle).
Remark

- The μ-Darboux transformation is a generalization of the classical Darboux transformation.
Remark

- The μ-Darboux transformation is a generalization of the classical Darboux transformation.
- $f^\#$ is called a classical Darboux transformation of f if there exists a sphere congruence enveloping f and $f^\#$.
\(\mu \)-Darboux transforms

Remark

- The \(\mu \)-Darboux transformation is a generalization of the classical Darboux transformation.
- \(f^\# \) is called a classical Darboux transformation of \(f \) if there exists a sphere congruence enveloping \(f \) and \(f^\# \).
- The \(\mu \)-Darboux transformation satisfies a weaker enveloping condition.
Special cases

For special parameter μ the transform on the left normal is trivial
For special parameter μ the transform on the left normal is trivial:

- if $\mu \in S^1$ then $\hat{N} = -N$.
Special cases

For special parameter μ the transform on the left normal is trivial:

- if $\mu \in S^1$ then $\hat{N} = -N$.
- if $\mu > 0$ then $\hat{N} = N$.
For special parameter μ the transform on the left normal is trivial:

- if $\mu \in S^1$ then $\hat{N} = -N$.
- if $\mu > 0$ then $\hat{N} = N$.

Question: Is \hat{f} for $\mu > 0$ the original HSL torus?
Special cases

For special parameter μ the transform on the left normal is trivial:

- if $\mu \in S^1$ then $\hat{N} = -N$.
- if $\mu > 0$ then $\hat{N} = N$.

Question: Is \hat{f} for $\mu > 0$ the original HSL torus?

More generally, does the Lagrangian angle β determine f?
Special cases

For special parameter μ the transform on the left normal is trivial:

- if $\mu \in S^1$ then $\hat{N} = -N$.
- if $\mu > 0$ then $\hat{N} = N$.

Question: Is \hat{f} for $\mu > 0$ the original HSL torus?

More generally, does the Lagrangian angle β determine f?

What is the condition for the existence of a HSL torus with Lagrangian angle β?
Recall: A Hamiltonian stationary Lagrangian immersion f has Lagrangian angle $\beta \iff *df = N df$ with $N = e^{i\beta}i$.
Recall: A Hamiltonian stationary Lagrangian immersion f has Lagrangian angle $\beta \iff *df = Ndf$ with $N = e^{i\beta}i$.

The operator $D : \Gamma(\mathbb{H}) \to \Gamma(\bar{K}\mathbb{H})$

$$D := \frac{1}{2}(d + J * d)$$

is a (quaternionic) holomorphic structure where the complex structure J on \mathbb{H} is given by left multiplication by N.
Recall: A Hamiltonian stationary Lagrangian immersion f has Lagrangian angle $\beta \iff \ast df = Ndf$ with $N = e^{i\beta}i$.

The operator $D : \Gamma(\mathbb{H}) \rightarrow \Gamma(\overline{K}\mathbb{H})$

$$D := \frac{1}{2}(d + J \ast d)$$

is a (quaternionic) holomorphic structure where the complex structure J on \mathbb{H} is given by left multiplication by N.

Goal: given $N = e^{i\beta}i$ find all holomorphic sections $\alpha \in \ker D$.
Recall: A Hamiltonian stationary Lagrangian immersion f has Lagrangian angle $\beta \iff \ast df = Ndf$ with $N = e^{j\beta}i$.

The operator $D : \Gamma(\mathbb{H}) \to \Gamma(\bar{K}\mathbb{H})$

$$D := \frac{1}{2}(d + J \ast d)$$

is a (quaternionic) holomorphic structure where the complex structure J on \mathbb{H} is given by left multiplication by N.

Goal: given $N = e^{j\beta}i$ find all holomorphic sections $\alpha \in \ker D$.

Note: $d^{\mu} \alpha = 0 \implies D\alpha = 0.$
Holomorphic sections with multiplier

Recall: A Hamiltonian stationary Lagrangian immersion f has Lagrangian angle $\beta \iff *df = Ndf$ with $N = e^{i\beta}i$.

The operator $D : \Gamma(\mathbb{H}) \to \Gamma(\bar{K}\mathbb{H})$

$$D := \frac{1}{2}(d + J \ast d)$$

is a (quaternionic) holomorphic structure where the complex structure J on \mathbb{H} is given by left multiplication by N.

Goal: given $N = e^{i\beta}i$ find all holomorphic sections α with multiplier, that is $\alpha \in \ker D$ with $\gamma^*\alpha = \alpha h_\gamma$, $\gamma \in \Gamma$.

Note: $d^\mu \alpha = 0 \implies D\alpha = 0$.
Holomorphic sections with multiplier

Let $f : \mathbb{C}/\Gamma \to \mathbb{R}^4$ be a Hamiltonian stationary torus. For $(A, B) \in \mathbb{C}^2$ consider

$$|\delta - B|^2 - |A|^2 = \frac{|\beta_0|^2}{4}, \quad <A, \delta - B> = 0 \quad (1)$$

with $\delta \in \Gamma^* + \frac{\beta_0}{2}$.
Holomorphic sections with multiplier

Let $f : \mathbb{C}/\Gamma \to \mathbb{R}^4$ be a Hamiltonian stationary torus. For $(A, B) \in \mathbb{C}^2$ consider

$$|\delta - B|^2 - |A|^2 = \frac{|\beta_0|^2}{4}, \quad <A, \delta - B> = 0$$

with $\delta \in \Gamma^* + \frac{\beta_0}{2}$. Denote by

$$\Gamma^*_{A,B} = \{ \delta \in \Gamma^* + \frac{\beta_0}{2} \mid \delta \text{ satisfies (1)} \}$$

the set of admissible frequencies.
Holomomorphic sections with multiplier

Let $f : \mathbb{C}/\Gamma \to \mathbb{R}^4$ be a Hamiltonian stationary torus, and D the quaternionic holomorphic structure given by the complex structure J.

Theorem (L-Romon)

- **Multipliers of holomorphic sections are exactly given by**

 $$h^{A,B} = e^{2\pi(\langle A, \cdot \rangle - i\langle B, \cdot \rangle)}$$

 with $\Gamma^*_{A,B} \neq \emptyset$.
Let $f : \mathbb{C}/\Gamma \to \mathbb{R}^4$ be a Hamiltonian stationary torus, and D the quaternionic holomorphic structure given by the complex structure J.

Theorem (L-Romon)

- **Multipliers of holomorphic sections are exactly given by**

 $$h^{A,B} = e^{2\pi(\langle A, \cdot \rangle - i\langle B, \cdot \rangle)}$$

 with $\Gamma_{A,B}^* \neq \emptyset$.

- **For** $\delta \in \Gamma_{A,B}^*$

 $$\alpha_\delta = e^{i\beta/2} (1 - k\lambda_\delta) e^{2\pi(\langle A, \cdot \rangle + \langle \delta - B, \cdot \rangle)}$$

 with $\lambda_\delta \in \mathbb{C}_*$ is a *(monochromatic)* holomorphic section.
HSL tori with prescribed Lagrangian angle [Helein-Romon, L-Romon]

Let Γ be a lattice in \mathbb{C}, and let $\beta_0 \in \Gamma^*$. Then $\beta = 2\pi < \beta_0, \cdot >$ is a Lagrangian angle of a Hamiltonian stationary torus f if and only if

$$\Gamma_{0,0}^* \supset \{ \pm \frac{\beta_0}{2} \}$$
HSL tori with prescribed Lagrangian angle
[Helein-Romon, L-Romon]

Let \(\Gamma \) be a lattice in \(\mathbb{C} \), and let \(\beta_0 \in \Gamma^* \). Then \(\beta = 2\pi \langle \beta_0, \rangle \) is a Lagrangian angle of a Hamiltonian stationary torus \(f \) if and only if

\[
\Gamma^*_{0,0} \supset \{ \pm \frac{\beta_0}{2} \}
\]

In this case, all HSL tori with Lagrangian angle \(\beta \) are (up to translation) of the form

\[
f = \sum_{\delta \in \Gamma^*_{0,0} \setminus \{ \pm \frac{\beta_0}{2} \}} \alpha_\delta m_\delta, \quad m_\delta \in \mathbb{C}.
\]
Let Γ be a lattice in \mathbb{C}, and let $\beta_0 \in \Gamma^*$. Then $\beta = 2\pi < \beta_0, >$ is a Lagrangian angle of a Hamiltonian stationary torus f if and only if

$$\Gamma_{0,0}^* \supset \{\pm \frac{\beta_0}{2}\}$$

In this case, all HSL tori with Lagrangian angle β are (up to translation) of the form

$$f = \sum_{\delta \in \Gamma_{0,0}^* \backslash \{\pm \frac{\beta_0}{2}\}} \alpha_\delta m_\delta, \quad m_\delta \in \mathbb{C}.$$

HSL tori with prescribed Lagrangian angle
[Helein-Romon, L-Romon]
Holomorphic sections with multiplier

Theorem (L-Romon)

*Every holomorphic section with multiplier $h^{A,B}$ is given by

$$
\alpha = \sum_{\delta \in \Gamma_{A,B}^*} \alpha_\delta m_\delta
$$

where $m_\delta \in \mathbb{C}$.\)
Holomorphic sections with multiplier

Theorem (L-Romon)

- Every holomorphic section with multiplier $h^{A,B}$ is given by
 \[\alpha = \sum_{\delta \in \Gamma^*_{A,B}} \alpha_\delta m_\delta \]

- $m_\delta \in \mathbb{C}$.
- $|\Gamma^*_{A,B}| = 1$ away from a discrete set of pairs (A, B).
The multiplier spectral curve

Let \(\text{Spec} := \{ h | \exists \alpha \in \ker D : \gamma^* \alpha = \alpha h_\gamma, \gamma \in \Gamma \} \), and \(\Sigma \) its normalization.
Let $\text{Spec} := \{ h \mid \exists \alpha \in \ker D : \gamma^* \alpha = \alpha h_\gamma, \gamma \in \Gamma \}$, and Σ its normalization.
Then there exists a line bundle \mathcal{L} such that
$$\mathcal{L}_\sigma = H^0_\sigma$$
for generic points $\sigma \in \Sigma$.
(see Bohle-L-Pedit-Pinkall for general conformal tori).
The multiplier spectral curve

Let $\text{Spec} := \{ h \mid \exists \alpha \in \ker D : \gamma^*\alpha = \alpha h_\gamma, \gamma \in \Gamma \}$, and Σ its normalization.
Then there exists a line bundle \mathcal{L} such that

$$\mathcal{L}_\sigma = H_\sigma^0$$

for generic points $\sigma \in \Sigma$.
(see Bohle-L-Pedit-Pinkall for general conformal tori).

Theorem (L-Romon)

- The spectral curves Σ_e and Σ of a Hamiltonian stationary torus are biholomorphic, and the eigenline bundle \mathcal{E} and \mathcal{L} coincide.
The multiplier spectral curve

Let \(\text{Spec} := \{ h \mid \exists \alpha \in \ker D : \gamma^* \alpha = \alpha h_\gamma, \gamma \in \Gamma \} \), and \(\Sigma \) its normalization.
Then there exists a line bundle \(\mathcal{L} \) such that
\[
\mathcal{L}_\sigma = H^0_\sigma
\]
for generic points \(\sigma \in \Sigma \).
(see Bohle-L-Pedit-Pinkall for general conformal tori).

Theorem (L-Romon)

- The spectral curves \(\Sigma_e \) and \(\Sigma \) of a Hamiltonian stationary torus are biholomorphic, and the eigenline bundle \(\mathcal{E} \) and \(\mathcal{L} \) coincide.
- In particular, the multiplier spectral curve of a Hamiltonian stationary torus can be compactified and has geometric genus 0.
Darboux transforms

Again, we can use holomorphic sections with multiplier to define a Darboux transform

\[\hat{f} = f + TH^{-1} \]

of a HSL torus \(f \) where \(T = \alpha \beta^{-1} \), \(d\alpha = -dfH\beta \) and \(H = \pi g^{-1} \bar{\beta}_0 e^{\frac{i\beta}{2} k} \).
Again, we can use holomorphic sections with multiplier to define a Darboux transform

$$\hat{f} = f + TH^{-1}$$

of a HSL torus f where $T = \alpha \beta^{-1}$, $d\alpha = -dfH\beta$ and

$$H = \pi g^{-1} \beta_0 e^{ij\beta} k.$$

Theorem (L-Romon)

- If $\alpha = \alpha_\delta$ is a monochromatic holomorphic section then \hat{f} is HSL with (after reparametrization) Lagrangian angle β.
Again, we can use holomorphic sections with multiplier to define a Darboux transform

$$\hat{f} = f + TH^{-1}$$

of a HSL torus f where $T = \alpha\beta^{-1}$, $d\alpha = -dfH\beta$ and $H = \pi g^{-1}\bar{\beta}_0 e^{i\beta/2}k$.

Theorem (L-Romon)

- If $\alpha = \alpha_\delta$ is a monochromatic holomorphic section then \hat{f} is HSL with (after reparametrization) Lagrangian angle β.
- f is obtained as limit of Darboux transforms with multiplier $\sigma \to \sigma_\infty \in \bar{\Sigma}$.
The Darboux transformation is a further generalization of the μ-Darboux transformation:

Theorem (L-Romon)

The monochromatic holomorphic sections are exactly the d^μ-parallel sections for some $\mu \in \mathbb{C}_*$.
The Darboux transformation is a further generalization of the μ-Darboux transformation:

Theorem (L-Romon)

The monochromatic holomorphic sections are exactly the d^μ-parallel sections for some $\mu \in \mathbb{C}_*$.

In other words, the monochromatic Darboux transforms are exactly the μ-Darboux transforms.
Theorem (L-Romon)

If $|\Gamma_{0,0}^*| = 4$ then all monochromatic Darboux transforms are after reparametrization of f.
Theorem (L-Romon)

- If $|\Gamma_{0,0}^*| = 4$ then all monochromatic Darboux transforms are after reparametrization f.
- However, there exist examples where $|\Gamma_{0,0}^*| > 4$, and the resulting monochromatic Darboux transforms are not Möbius transformations of f.
Darboux transforms

Theorem (L-Romon)

- If $|\Gamma_{0,0}^*| = 4$ then all monochromatic Darboux transforms are after reparametrization f.

- However, there exist examples where $|\Gamma_{0,0}^*| > 4$, and the resulting monochromatic Darboux transforms are not Möbius transformations of f.

- Moreover, there exists HSL tori with polychromatic holomorphic sections α.
Darboux transforms

Theorem (L-Romon)

- If $|\Gamma_{0,0}^*| = 4$ then all monochromatic Darboux transforms are after reparametrization f.
- However, there exist examples where $|\Gamma_{0,0}^*| > 4$, and the resulting monochromatic Darboux transforms are not Möbius transformations of f.
- Moreover, there exists HSL tori with polychromatic holomorphic sections α so that the corresponding Darboux transforms are not Lagrangian in \mathbb{C}^2.
Homogeneous torus
Clifford torus
Thanks!