NEW EXAMPLES OF WILLMORE TORI IN S^4

A. GOUBERMAN, K. LESCHKE

Abstract. Using the (generalized) Darboux transformation in the case of the Clifford torus, we construct for all Pythagorean triples $(p,q,n) \in \mathbb{Z}^3$ a \mathbb{CP}^3–family of Willmore tori in S^4 with Willmore energy $2n\pi^2$.

1. Introduction

Classical geometers like Bianchi, Darboux and Bäcklund used local transformations to obtain new examples of a particular class of surfaces out of simple known ones by geometric constructions. For instance, the Darboux transformation was classically [6] defined for isothermic surfaces, that is surfaces which allow a conformal curvature line parametrization: two immersions f and $f^\#$ form a Darboux pair if there exists a sphere congruence which envelopes both surfaces f and $f^\#$. In this case, both f and $f^\#$ are isothermic.

In modern days, the Darboux transformation is used to study global properties of surfaces: relaxing the enveloping condition one obtains a (generalized) Darboux transformation for conformal immersions $f : M \to S^4$ of a Riemann surface into the 4–sphere. The existence of a Riemann surface worth of global solutions is, at least in the case when $M = T^2$ is a 2–torus, given by the link to the multiplier spectral curve of the conformal torus [3]. Here points on the multiplier spectral curve correspond to closed Darboux transforms of f.

In the case when the conformal immersion is given by a harmonicity condition, e.g. for constant mean curvature surfaces, Hamiltonian stationary Lagrangians or (constrained) Willmore surfaces, one obtains an associated family of flat connections, and one can construct Darboux transforms – so called μ–Darboux transforms – by using parallel sections of these [5], [12], [11], [2]. In the spirit of classical surface theory, we study in this short note the μ–Darboux transforms of the Clifford torus $f : M \to S^3$ to obtain new Willmore tori in S^4.

2. The Darboux transformation

We briefly recall the Darboux transformation on a conformal immersion $f : M \to S^4$ of a Riemann surface into the 4–sphere [3]. To this end, we consider the 4–sphere $S^4 = \mathbb{HP}^1$ as quaternionic projective line and identify $f : M \to S^4$ with the pull–back $L = f^*T$ of the tautological line bundle over \mathbb{HP}^1 by f, that is $L_p = f(p)$. The derivative of f can be identified with the map $\delta = \pi d|_L$ where $\pi : V \to V/L$ is the canonical projection of the trivial \mathbb{H}^2 bundle V, and d is the trivial connection on V. Moreover, f is a conformal immersion if and only if there exists a complex structure $S \in \Gamma(\text{End}(V))$, $S^2 = -1$.

Date: January 19, 2009.

Both authors partially supported by DFG SPP 1154 “Global Differential Geometry”.

1
stabilizing L such that
\[(2.1) \quad *\delta = S\delta = \delta S,\]
where $*$ denotes the negative Hodge star operator. Complex structures S on V can be, and will be in the following, identified with sphere congruences [4, Prop. 2]. The conformality condition (2.1) means geometrically that the sphere congruence S envelopes f, that is, S passes through f and the tangent planes of f and S coincide at corresponding points in an oriented way. In particular, two immersions $f, f^\# : M \to S^4$ are classical Darboux transforms of each other, if there exists a complex structure $S \in \Gamma(\text{End}(V))$ with $*\delta = S\delta = \delta S$ and $*\delta^\# = S\delta^\# = \delta^\# S$ where δ and $\delta^\#$ denote the derivatives of f and $f^\#$ respectively.

To obtain the Darboux transformation for conformal immersions $f : M \to S^4$ one considers sphere congruences with a relaxed enveloping condition:

Definition 2.1 ([3]). Let $f, \hat{f} : M \to S^4$ be conformal immersions. Then \hat{f} is a Darboux transform of f if there exists a sphere congruence enveloping f and left-enveloping \hat{f}, that is if there exists a complex structure $S \in \Gamma(\text{End}(V))$, $S^2 = -1$, with $*\delta = S\delta = \delta S$ and $*\delta^\# = S\delta^\# = \delta^\# S$.

In the case when $M = T^2$ is a 2–torus there always exists a Riemann surface Σ worth of Darboux transforms, and indeed Σ is the multiplier spectral curve [3] of the conformal torus. We shortly recall the construction of Darboux transforms: since f is a conformal immersion, that is in particular $*\delta = S\delta$, the complex structure S induces a complex structure $J = S_{V/L} \in \Gamma(\text{End}(V/L))$, $J^2 = -1$, on the line bundle V/L.

Lemma 2.2 ([3]). Let $f : M \to S^4$ be a conformal immersion and J be the associated complex structure on V/L. Then $D\varphi := (\pi d\hat{\varphi})''$ defines a (quaternionic) holomorphic structure on V/L. Here $\hat{\varphi}$ is an arbitrary lift of $\varphi = \pi \hat{\varphi} \in \Gamma(V/L)$, and $\omega'' = \frac{1}{2}(\omega + J * \omega)$ denotes the $(0,1)$ part of a 1–form $\omega \in \Omega^1(V/L)$ with respect to the complex structure J.

Indeed, D is well-defined since f is conformal and thus $(\pi d\psi)'' = \delta\psi'' = 0$ for $\psi \in \Gamma(L)$. A holomorphic structure is an elliptic operator [8, Sec. 2], and thus has finite dimensional kernel $\ker D =: H^0(V/L)$. To obtain a Riemann surface worth of Darboux transforms of a conformal torus, we have to use holomorphic sections with multiplier, that is $\varphi \in \ker D \subset \Gamma(V/L)$ with
\[\gamma^*\varphi = \varphi h_\gamma, \quad h_\gamma \in \mathbb{C}_*, \quad \gamma \in \pi_1(M),\]
where we denote by \tilde{W} the pullback of a bundle W to the universal cover \tilde{M} of M.

Lemma 2.3 (see [3]). Every holomorphic section with multiplier $\varphi \in H^0(V/L)$ of the canonical holomorphic bundle of a conformal immersion $f : M \to S^4$ has a unique lift $\hat{\varphi} \in \Gamma(V)$ such that
\[(2.2) \quad \pi d\hat{\varphi} = 0,\]
where $\pi : V \to V/L$ is the canonical projection. This unique lift $\hat{\varphi}$ is called the prolongation of φ.

The conformality condition (2.1) means geometrically that the sphere congruence S envelopes f, that is, S passes through f and the tangent planes of f and S coincide at corresponding points in an oriented way. In particular, two immersions $f, f^\# : M \to S^4$ are classical Darboux transforms of each other, if there exists a complex structure $S \in \Gamma(\text{End}(V))$ with $*\delta = S\delta = \delta S$ and $*\delta^\# = S\delta^\# = \delta^\# S$ where δ and $\delta^\#$ denote the derivatives of f and $f^\#$ respectively.
Note that the prolongation \(\hat{\varphi} \) has the same multiplier as \(\varphi \) so that, if \(\varphi \) has no zeros, \(\hat{f} = \hat{\varphi} : M \to S^4 \) defines a map from the Riemann surface \(M \) into the 4–sphere which turns out to be a Darboux transform of \(f \). In the case when \(\varphi \) has zeros, one obtains a conformal map \(\hat{f} \) away from the zeros of \(\varphi \), which is again a Darboux transform on its domain. Such a map \(\hat{f} \) is called a \textit{singular} Darboux transform.

Lemma 2.4 ([3]). A branched conformal immersion \(\hat{f} : M \to S^4 \) is a (singular) Darboux transform of \(f \) if and only if \(\hat{f} \) is obtained by the non–constant prolongation of a holomorphic section \(\varphi \in H^0(\tilde{V}/L) \) with multiplier.

Remark 2.5. If we omit the closing condition that \(\varphi \) has a multiplier, we obtain Darboux transforms \(\hat{f} : \tilde{M} \to S^4 \) on the universal cover \(\tilde{M} \) of \(M \).

Given a complex structure \(S \), we decompose the derivative of \(S \)
\[
dS = 2(\ast Q - \ast A)
\]
into \((1,0)\) and \((0,1)\)–parts
\[
(dS)' = \frac{1}{2}(dS - S \ast dS) = -2 \ast A
\]
and
\[
(dS)'' = \frac{1}{2}(dS + S \ast dS) = 2 \ast Q
\]
respectively. The \textit{conformal Gauss map} of a conformal immersion \(f : M \to S^4 \) is a sphere congruence which envelopes \(f \) and has the same mean curvature vector \(\mathcal{H} \) as \(f \). In terms of the corresponding complex structure \(S \), this reads as [4, Thm. 2]
\[
(2.3) \quad \ast \delta = S \delta = \delta S \quad \text{and} \quad \text{im} A \subset \Omega^1(L).
\]
In this case, \(A, Q \) are called the \textit{Hopf fields} of \(f \). Since \(S^2 = -1 \) the Hopf fields satisfy
\[
(2.4) \quad \ast A = SA = -AS \quad \text{and} \quad \ast Q = -SQ = QS
\]
Let now \(f : M \to S^4 \) be a Willmore surface that is \(f \) is an immersion which is a critical point of the Willmore energy \(W(f) = \int_M \mathcal{H}^2 dA \) under variations with compact support. It is a well-known fact [7],[13] that \(f \) is Willmore if and only if the conformal Gauss map of \(f \) is harmonic. This can be expressed [4, Prop. 5] by the condition
\[
d \ast A = 0 \quad \text{or, equivalently,} \quad d \ast Q = 0.
\]

Lemma 2.6 ([8, Lemma 6.3]). Let \(f : M \to S^4 \) be a conformal immersion with conformal Gauss map \(S \) and Hopf field \(A \). Then \(f \) is Willmore if and only if the family of complex connections
\[
d^\mu = d + \ast A(S(a - 1) + b)
\]
is flat for all \(\mu \in \mathbb{C}_+ \). Here \(\mathbb{C} = \text{Span}\{1, I\} \) where \(I \) is the complex structure on \(V \) given by right multiplication by the imaginary quaternion \(i \), and
\[
a = \frac{\mu + \mu^{-1}}{2}, \quad b = I \frac{\mu^{-1} - \mu}{2}.
\]

Proof. Since \(d \) is the trivial connection and \([I, S] = 0\), the curvature of \(d^\mu \) is given by
\[
R^\mu = (d \ast A)(S(a - 1) + b)
\]
where we used that \(Q \wedge A = 0 \) by type considerations. Therefore, \(S \) is harmonic if and only if \(d^\mu \) is flat. \(\square \)
We consider now parallel sections of $d\mu$ with multiplier that is $d\mu \hat{\varphi} = 0$ and $\gamma^* \hat{\varphi} = \varphi h_\gamma$, $h_\gamma \in \mathbb{C}_\times$, $\gamma \in \pi_1(M)$. Denoting the projection of $\hat{\varphi}$ to V/L by $\varphi = \pi \hat{\varphi} \in \Gamma(V/L)$ and recalling (2.3) that $\ast A(S\hat{\varphi}(a-1) + \hat{\varphi} b) \in \Gamma(L)$, we obtain
\[\pi d\mu \hat{\varphi} = 0. \]

In particular, φ is a holomorphic section with multiplier, and $\hat{\varphi}$ is the prolongation of φ. In other words, every $d\mu$–parallel section with multiplier gives rise to a Darboux transform of f.

Definition 2.7. A Darboux transform $\hat{f} : M \to S^4$ which is given by a parallel section of $d\mu$ is called a μ–Darboux transform of f.

Although in general the Darboux transforms of a Willmore torus are not necessary Willmore [1], the μ–Darboux transforms are [2].

3. The Clifford torus

In this paper we shall compute all μ–Darboux transforms of the Clifford torus
\[f : \mathbb{C}/\Gamma \to S^3, \quad u + iv \mapsto \frac{1}{\sqrt{2}}(e^{iu} + je^{iv}), \]
where $\Gamma = 2\pi \mathbb{Z} + 2\pi i \mathbb{Z}$ is the lattice in \mathbb{C}. Since the multiplier spectral curve of the Clifford torus has genus zero, parallel sections of the family of flat connections $d\mu$ can be computed explicitly. Note that though f maps into the 3–sphere, the μ–Darboux transforms will be conformal immersions into the 4–sphere. Therefore, we will consider a map $f : M \to S^3$ into the 3–sphere with the inclusions
\[S^3 \hookrightarrow \mathbb{R}^4 = \mathbb{H} \quad \text{and} \quad \mathbb{H} \hookrightarrow \mathbb{HP}^1, x \mapsto \begin{pmatrix} x \\ 1 \end{pmatrix} \]
as a map into the 4–sphere. The associated line bundle of f is given by $L = \psi \mathbb{H}$ where
\[\psi = \begin{pmatrix} f \\ 1 \end{pmatrix}. \]
The derivative of L is given by
\[\delta \psi = \pi \begin{pmatrix} df \\ 0 \end{pmatrix} \]
so that f is conformal if and only if there exists left and right normals $N, R : M \to S^2$ with $\ast df = N df = -df R$. The mean curvature vector \mathcal{H} of a conformal immersion f is given [4, Sec. 7.2] by
\[\mathcal{H} = -N \bar{H} \]
where H is defined by $df H = (dN)'$. Here $'$ denotes the $(1,0)$ part with respect to the complex structure given by left multiplication by N, that is
\[\omega' = \frac{1}{2} (\omega - N \ast \omega). \]
In particular, the conformal Gauss map of f is given by $S = GS_0G^{-1}$ where
\[G = \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad S_0 = \begin{pmatrix} N & 0 \\ -H & -R \end{pmatrix}, \]
\[(3.1) \]
and the Hopf field \(A = GA_0G^{-1} \) by
\[
* A_0 = \frac{1}{4} \left(dH + H * df + R * dH - H * dN - dR + R * dR \right).
\]

Let us now turn to the case when \(f : \mathbb{C}/\Gamma \to S^3 \) is the Clifford torus. Then \(f \) is a conformal immersion with left and right normal
\[
N(u,v) = je^{i(u-v)} \quad \text{and} \quad R(u,v) = je^{i(v+u)},
\]
and mean curvature vector \(\mathcal{H} = -N\bar{H} \) where
\[
H = \frac{\sqrt{2}}{2} (e^{-iu} + je^{iv}).
\]

Moreover \(f \) satisfies the following fundamental symmetries
\[
(i) \ R = Hf, \quad N = fH \\
(ii) \ H \text{ is conformal with } * dH = -RdH = dHN.
\]

Therefore, the Hopf field \(A = GA_0G^{-1} \) is given by
\[
* A_0 = \frac{1}{4} \left(\begin{array}{cc} 0 & 0 \\ dH & 2dHf \end{array} \right)
\]
where we also used that \(RH = HN \), see [4, Sec. 7.2].

4. \(\mu \)-Darboux transforms

To compute \(\mu \)-Darboux transforms of the Clifford torus \(f \) we have to find parallel sections \(\hat{\varphi} \in \Gamma(V) \) of the family of flat connections \(d^\mu \) on the trivial \(\mathbb{H}^2 \) bundle \(V \). We solve the differential equation \(d^\mu \hat{\varphi} = 0 \) that is with (2.4)
\[
d\hat{\varphi} = -A\hat{\varphi}(a - 1) - * A\hat{\varphi}b.
\]

Putting \(\phi := G^{-1}\hat{\varphi} \) we can equivalently find solutions of
\[
(4.1) \quad d\phi = -A_0\phi(a - 1) - * A_0\phi b - (dG)\phi,
\]
where we use that \(G^{-1}dG = dG \). Since the connections \(d^\mu \) are complex, this leads to a system of complex differential equations: Writing \(\phi = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \) and decomposing \(\alpha = \alpha_1 + j\alpha_2, \beta = \beta_1 + j\beta_2, \alpha_1, \alpha_2, \beta_1, \beta_2 \in \Gamma(\mathbb{C}) \) with respect to the splitting \(\mathbb{H} = \mathbb{C} + j\mathbb{C} \), we consider
\[
\phi = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \beta_1 \\ \beta_2 \end{pmatrix} \in \Gamma(\mathbb{C}^4)
\]
as a section of the trivial \(\mathbb{C}^4 \) bundle. After a lengthy but straightforward computation [9] we obtain the system of linear partial differential equation with non-constant coefficients:
\[
(4.2) \quad \phi_u = U\phi, \quad \phi_v = V\phi,
\]
where we denote by \((\cdot)_u \) and \((\cdot)_v \) the partial derivatives with respect to \(u \) and \(v \) respectively, and

\[
U(u, v) = \frac{1}{4\sqrt{2}} \begin{pmatrix}
0 & 0 & -4ie^{iu} & 0 \\
0 & 4\sqrt{2}i & 0 & 4i \\
ie^{iv}(a - 1) & -ib & \sqrt{2}i((a - 1) + b) & \sqrt{2}i(a - 1 - b) \\
ib & i(a - 1) & \sqrt{2}i((a - 1) + b) & -\sqrt{2}i(a - 1 - b)
\end{pmatrix}
\]

\[
V(u, v) = \frac{1}{4\sqrt{2}} \begin{pmatrix}
0 & 0 & -4ie^{iv} & 0 \\
0 & 4\sqrt{2}i & 0 & 4i \\
-ib & ie^{iu}(a - 1) & \sqrt{2}i(a - 1 - b) & -\sqrt{2}i(a - 1 + b) \\
i(b) & -ie^{iu}(a - 1) & \sqrt{2}i(a - 1 - b) & \sqrt{2}i(a - 1 + b)
\end{pmatrix}
\]

Lemma 4.1. A section \(\hat{\varphi} \in \Gamma(V) \) is parallel with respect to \(d\mu \) if and only if

\[\eta := e^{D}G^{-1}\hat{\varphi}, \quad D(u, v) := \text{diag}(iv, iu, i(u + v), 0), \]

solves

\[(4.3) \quad \eta_u = \tilde{U}\eta, \quad \eta_v = \tilde{V}\eta, \]

where

\[\tilde{U} = \frac{1}{4\sqrt{2}} \begin{pmatrix}
0 & 0 & -4i & 0 \\
0 & 4\sqrt{2}i & 0 & 4i \\
i(b) & i(a - 1) & \sqrt{2}i((a - 1) + b) & \sqrt{2}i(a - 1 - b) \\
i(b) & i(a - 1) & \sqrt{2}i((a - 1) + b) & \sqrt{2}i(a - 1 - b)
\end{pmatrix}, \]

\[\tilde{V} = \frac{1}{4\sqrt{2}} \begin{pmatrix}
4\sqrt{2}i & 0 & 0 & -4i \\
0 & 0 & -4i & 0 \\
i(a - 1) & -ib & \sqrt{2}i((a - 1) + b) & -\sqrt{2}i(a - 1 + b) \\
ib & -i(a - 1) & -\sqrt{2}i(a - 1 + b) & -\sqrt{2}i(a - 1 - b)
\end{pmatrix}. \]

are constant. In particular, \(\tilde{U} \) and \(\tilde{V} \) are commuting matrices.

Proof. The systems of linear differential equations (4.2) and (4.3) are equivalent for

\[\tilde{U} = e^{D}(D_u + U)e^{-D} \quad \text{and} \quad \tilde{V} = e^{D}(D_v + V)e^{-D}. \]

One easily verifies

\[e^{D}Ue^{-D} = \frac{1}{4\sqrt{2}} \begin{pmatrix}
0 & 0 & -4i & 0 \\
0 & 0 & 0 & 4i \\
i(b) & i(a - 1) & \sqrt{2}i(a - 1 + b) & \sqrt{2}i(a - 1 - b) \\
i(b) & i(a - 1) & \sqrt{2}i(a - 1 - b) & \sqrt{2}i(a - 1 + b)
\end{pmatrix} \]

so that \(\tilde{U} \) is given by (4.4), and a similar computation gives \(\tilde{V} \). Finally, since \(\tilde{U} \) and \(\tilde{V} \) are constant, the compatibility condition \(\eta_{uv} = \eta_{vu} \) shows that \(\tilde{U} \) and \(\tilde{V} \) are commuting. \(\square \)

Since \(\tilde{U} \) and \(\tilde{V} \) are simultaneously diagonalizable, all solutions of (4.3) are of the form

\[\eta(u, v) = Ce^{D_1u + D_2v}, \quad c \in \mathbb{C}^4. \]

where \(C \) is a common basis auf eigenvectors of \(\tilde{U} \) and \(\tilde{V} \), and \(D_1, D_2 \) are the corresponding diagonal matrices of eigenvalues.
Lemma 4.2.

(i) The spectra of \tilde{U} and \tilde{V} coincide, and

$$\text{spec}(\tilde{U}) = \{ \lambda_k \mid k \in \mathbb{Z}_4 \}, \quad \lambda_k := \lambda(i^k x).$$

Here we put $x := e^{\frac{i}{4}\log(\mu)}$, where \log is the main branch of the logarithm, and

$$\lambda(y) = \frac{(1+i)(y+1)(y+i)}{4y},$$

that is

\begin{align*}
\lambda_0 &= \frac{(1+i)(x+1)(x+i)}{4x}, \\
\lambda_1 &= -\frac{(1-i)(x+1)(x-i)}{4x}, \\
\lambda_2 &= -\frac{(1+i)(x-1)(x-i)}{4x}, \\
\lambda_3 &= \frac{(1-i)(x-1)(x+i)}{4x}.
\end{align*}

(ii) Let

$$w(y) = \begin{pmatrix} \frac{1}{\sqrt{2}} \xi(y) \\ \frac{1}{\sqrt{2}} i \xi(y) \lambda(y) \\ i(i - \lambda(y)) \end{pmatrix}$$

with

$$\xi(y) := \frac{\mu - i}{y + i},$$

and define $w_k := w(i^k x)$ and $\xi_k = \xi(i^k x)$ where again $x = e^{\frac{i}{4}\log(\mu)}$.

- For $\mu \neq \pm 1$ the eigenvalues of \tilde{U} (and \tilde{V}) are pairwise distinct. The eigenspaces of \tilde{U} and \tilde{V} are spanned by

$$E_{\lambda_k}(\tilde{U}) = \text{span}\{w_k\}.$$

- For $\mu = 1$ the eigenvalues $\lambda_0 = \lambda_1 = i, \lambda_2 = \lambda_3 = 0$ coincide, and the complex 2-dimensional eigenspaces are given by

$$E_{\lambda_0}(\tilde{U}) = \lim_{\mu \to 1} E_{\lambda_0}(\tilde{U}) \oplus E_{\lambda_1}(\tilde{U}),$$

$$E_{\lambda_i}(\tilde{U}) = \lim_{\mu \to 1} E_{\lambda_2}(\tilde{U}) \oplus E_{\lambda_3}(\tilde{U}).$$

- For $\mu = -1$ the eigenvalues are $\lambda_0 = \frac{1+i\sqrt{2}}{2} i, \lambda_2 = \frac{1-i\sqrt{2}}{2} i$ and $\lambda_1 = \lambda_3 = \frac{1}{2} i$. The eigenspaces are given by $E_{\lambda_k}(\tilde{U}) = \text{span}\{w_k\}, k = 0, 2$, and

$$E_{\lambda_{-\frac{1}{2}}}(\tilde{U}) = \lim_{\mu \to -1} E_{\lambda_1}(\tilde{U}) \oplus E_{\lambda_3}(\tilde{U}),$$

where the latter is again complex 2-dimensional.

(iii) Let $\lambda_k \in \text{spec}(\tilde{U})$ be an eigenvalue of \tilde{U}, and define

$$\epsilon_k := \xi_k \lambda_k = \lambda_{k+1}, \quad k \in \mathbb{Z}_4.$$

Then ϵ_k is an eigenvalue of \tilde{V}, and

$$E_{\lambda_k}(\tilde{U}) = E_{\epsilon_k}(\tilde{V}).$$

We skip the computational proof [9] and remark that the group $< \zeta_4 >= < i >$ acts on the spectrum by

$$\lambda(\sqrt[4]{\mu}) \mapsto \lambda(i\sqrt[4]{\mu})$$

for some fourth root $\sqrt[4]{\mu}$ of μ. For the subgroup $< \zeta_2 >= < -1 >$ the action can be described by

$$\lambda(-\sqrt[4]{\mu}) = i - \lambda(\sqrt[4]{\mu}) \quad \text{resp.} \quad \lambda_{k+2} = i - \lambda_k, \quad k \in \mathbb{Z}_4.$$
Furthermore we see that the eigenvalues are discontinuous in $\mu \in \mathbb{C}^*$ but are continuous on the 4 : 1-covering $\mathbb{C}^* \to \mathbb{C}^*$ given by $x \mapsto x^4 = \mu$. The group $< \zeta_4 >$ acts as deck transformations of this covering.

We summarize:

Proposition 4.3. For each $\mu \in \mathbb{C}^*$ the fundamental parallel sections $\hat{\phi}_k := G\phi_k, k = 0, \ldots, 3$, span the space of d^4–parallel sections where

\[
\phi_k := e^{-D}C e^{D_1 u + D_2 v} e_k.
\]

Here $e_k \in \mathbb{C}^4$ is the $(k + 1)$-th standard basis vector,

\[
D = \text{diag}(iv, iu, i(u + v), 0)
\]

\[
D_1 = \text{diag}(\lambda_0, \lambda_1, \lambda_2, \lambda_3)
\]

\[
D_2 = \text{diag}(\epsilon_0, \epsilon_1, \epsilon_2, \epsilon_3)
\]

and the columns of C are the corresponding basis of eigenvectors of \hat{U}. In particular, for $\mu \neq 1$ we get

\[
\phi_k = \left(\frac{1}{\sqrt{2}}(\xi_k e^{-iv} + je^{-iu}) \right) e^{\lambda_k u + \epsilon_k v}
\]

and for $\mu = 1$

\[
\phi_0 = \begin{pmatrix} f \\ -1 \end{pmatrix}, \quad \phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} j \\ 0 \end{pmatrix}, \quad \phi_2 = \phi_0 j, \quad \phi_3 = \phi_1 ij.
\]

We now obtain all μ–Darboux transforms on the universal cover $\hat{M} = \mathbb{C}$ of the Clifford torus:

Theorem 4.4. Every μ–Darboux transform $\hat{f} : \mathbb{C} \to S^4$ of the Clifford torus, $\mu \neq 1$, is given by

\[
\hat{f}(u, v) = \frac{1}{\sqrt{2}} (g_1(u, v) e^{iu} + j g_2(u, v) e^{iv}),
\]

where

\[
g_1(u, v) = \sum_{k,l=0}^{3} \frac{(-i - \lambda_k)(\xi_k e^{-iv})}{(\lambda_k + \xi_k e^{-iv}) e^{(\lambda_k + \xi_k e^{-iv}) u + (\epsilon_k + \pi) v} s_k s_l}
\]

\[
g_2(u, v) = \sum_{k,l=0}^{3} \frac{(-i - \lambda_k)(\xi_k e^{-iv})}{(\lambda_k + \xi_k e^{-iv}) e^{(\lambda_k + \xi_k e^{-iv}) u + (\epsilon_k + \pi) v} s_k s_l}
\]

with $s_k \in \mathbb{C}$.

Proof. Let $\mu \neq 1$ and $\phi = \sum_{k=0}^{3} \phi_k s_k$ be a parallel section of d^4 where $s_k \in \mathbb{C}$ and ϕ_k are the fundamental solutions (4.7). Then $\hat{f} = f + \alpha \beta^{-1}$ is the μ–Darboux transform given by $\phi = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$, and the claim follows by a straightforward computation. \square

Remark 4.5. In [2, Thm. 2.5] it is shown that all immersed μ–Darboux transforms of a Willmore surface are again Willmore. In particular, the μ–Darboux transforms obtained above are Willmore surfaces in S^4.
NEW EXAMPLES OF WILLMORE TORI IN S^4

So far, we considered the μ–Darboux transformation on the universal cover \mathbb{C} of the 2–torus $T^2 = \mathbb{C}/\Gamma$. To obtain tori we have to find parallel sections with multiplier. Since $\dot{\phi} = G^{-1} \phi$, and G is defined (3.1) on $T^2 = \mathbb{C}/\Gamma$, it is enough to find solutions ϕ of (4.2) with multiplier.

Theorem 4.6. Let $f : \mathbb{C}/\Gamma \to S^3$ be the Clifford torus.

(i) A fundamental solution ϕ_k is a parallel section of $d\mu$ with multiplier, and the μ–Darboux transform given by ϕ_k, $\mu \neq 1$, is obtained by rotating and scaling f. For $\mu = 1$ all μ-Darboux transforms are constant.

(ii) Let $\mu \neq 1$ and $\hat{f} : \mathbb{C}/\Gamma \to S^4$ be a closed μ-Darboux transform of f. Then there exists a fundamental solution $\hat{\phi}_k = G\phi_k$ with

$$\hat{f} = \hat{\phi}_k \mathbb{H}.$$

In particular, every non-constant μ-Darboux transform $\hat{f} : \mathbb{C}/\Gamma \to S^4$ of f is the Clifford torus.

Proof.

(i) If

$$\phi_k = \left(\frac{1}{\sqrt{2}}(\xi_k e^{-iv} + je^{-iu}) \right) e^{\lambda_k u + \epsilon_k v}.$$

is a fundamental solution, then the corresponding μ-Darboux transform is

$$\hat{f} = \frac{1}{\sqrt{2}}(r_1 e^{iu} + r_2 e^{iv}),$$

where

$$r_1 = \frac{|\epsilon_k|^2 + |i - \lambda_k|^2 - i\xi_k \epsilon_k + i(i - \lambda_k)}{|\epsilon_k|^2 + |i - \lambda_k|^2},$$

$$r_2 = \frac{|\epsilon_k|^2 + |i - \lambda_k|^2 - i\xi_k \epsilon_k - \xi_k i(i - \lambda_k)}{|\epsilon_k|^2 + |i - \lambda_k|^2}. $$
One easily verifies with \(\epsilon_k = \xi_k \lambda_k \) and \(i - \lambda_k = -\xi_k (i - \epsilon_k) \) that
\[
\frac{r_1}{r_2} = -\frac{\xi_k}{\xi_k} \in S^1,
\]
so that \(r_2 = r_1 e^{\theta} \) for a \(\theta \in \mathbb{R} \) and \(\hat{f}(u, v) = f(u, v + \theta)r_1 \).

Proposition 4.3 implies that \(\hat{\phi}_k = G\phi_k \) is constant for \(\mu = 1 \), and thus an arbitrary solution \(\phi = \sum_k \phi_k s_k \) gives a constant Darboux transform \(\hat{f} = G\phi^H = \text{const.} \)

(ii) Let \(\hat{f} \) be given by the section \(\phi = G^{-1}\hat{\phi} \) and suppose that \(\phi \) is not a fundamental solution, i.e. \(\phi = \sum_k \phi_k s_k \) and \(s_k, s_l \neq 0 \) for some \(k \neq l \). The monodromy condition implies that
\[
\phi(u + 2\pi, v) = \phi(u, v) h_1 \quad \text{and} \quad \phi(u, v + 2\pi) = \phi(u, v) h_2
\]
with \(h_1, h_2 \in \mathbb{C} \). Since the fundamental solutions
\[
\phi_k = \left(\frac{1}{\sqrt{2}}(\xi_k e^{-iuv} + j e^{-iu}) \right) e^{\lambda_k u + \epsilon_k v}.
\]
are linearly independent over \(\mathbb{C} \), it follows that
\[
h_1 = e^{2\pi \lambda_k} = e^{2\pi \lambda_l} \quad \text{and} \quad h_2 = e^{2\pi \epsilon_k} = e^{2\pi \epsilon_l},
\]
that is
\[
\lambda_k - \lambda_l \in i\mathbb{Z} \quad \text{and} \quad \epsilon_k - \epsilon_l = \lambda_{k+1} - \lambda_{l+1} \in i\mathbb{Z}.
\]
From (4.6) we see that
\[
\lambda_0 - \lambda_1 = \frac{x^2 - 1}{2x}, \quad \lambda_0 - \lambda_3 = \frac{i(x^2 + 1)}{2x}
\]
and the remaining differences \(\lambda_k - \lambda_l \) can be computed by using \(\Sigma_{k=0}^{3} (-1)^k \lambda_k = 0. \) Then it is easy to show that (4.8) is satisfied only if \(x \in \{ \pm 1, \pm i \} \) which contradicts \(\mu = x^4 \neq 1. \)

\[\square \]

5. The spectral curve

As we have seen, for \(\mu \neq \pm 1 \) the holonomy matrix \(H^\mu \) of the complex connection \(d^\mu \) has four distinct eigenvalues. Since \(H^\mu \) depends holomorphically on \(\mu \), the set of eigenvalues
\[
\text{Eig} = \{ (\mu, h) \mid \exists \hat{\phi} : d^\mu \hat{\phi} = 0 \text{ and } \gamma^* \hat{\phi} = \hat{\phi} h \}
\]
is an analytic set. We denote by \(\Sigma_h \) the normalization of Eig, the so–called spectral curve of the Clifford torus (compare [10]). Note that the map \(\text{Eig} \rightarrow \mathbb{C}_*, (\mu, h) \mapsto \mu \) gives a 4–fold covering \(\Sigma_h \rightarrow \mathbb{C}_* \). Moreover, a fundamental solution \(\phi_k \) defines a holomorphic line bundle \(\mathcal{E}_k^\mu := G\phi_k \mathbb{C}
→ \Sigma_h \) over the spectral curve. We show that \(\mathcal{E}_k^\mu \) extends holomorphically to \(0, \infty \), and thus the spectral curve \(\Sigma_h \) can be compactified.

Proposition 5.1. The line bundle \(\mathcal{E}_k^\mu \rightarrow \mathbb{C}_* \) extends holomorphically at \(0, \infty \), and \(\Sigma_h \rightarrow \mathbb{CP}^1 \) is a 4–fold covering branched at \(0, \infty \). In particular, the compactified spectral curve \(\bar{\Sigma}_h \) has genus zero, and the Clifford torus \(f \) is the limit
\[
f = \lim_{\mu \rightarrow \infty} \mathcal{E}_k^\mu \mathbb{H} = \lim_{\mu \rightarrow 0} \mathcal{E}_k^\mu \mathbb{H}.
\]
NEW EXAMPLES OF WILLMORE TORI IN S^4

Figure 2. μ–Darboux transform with $(p, q, n) = (3, 4, 5)$

Proof. Let $\tilde{\varphi}_k = G\phi_k$ be a fundamental solution with

$$\phi_k = \left(\begin{array}{c} \alpha_k \\ \beta_k \end{array} \right) = \left(\begin{array}{c} \frac{1}{\sqrt{2}}(\xi_k e^{-iu} + je^{-iv}) \\ i\xi_k e^{-i(u+v)} + ji(i - \lambda_k) \end{array} \right) e^{\lambda_k u + \epsilon_k v}.$$

Then $\tilde{f} = f + T_k$ with $T_k = \alpha_k \beta_k^{-1}$ and

$$T_k = \frac{1}{\sqrt{2}}(\xi e^{-iv} + je^{-iu})(i\epsilon e^{-i(u+v)} + ji(i - \lambda))^{-1} \to 0$$

since

$$\lambda_k = (1 + i)(i^k x + 1)(i^k x + i) \to \infty,$$

and $|\xi| \to 1$ for $\mu \to 0$ and $\mu \to \infty$. This shows that $\tilde{f} \to f$ for $\mu \to 0$ und $\mu \to \infty$, and

$$E^{\mu}_{\tilde{f}} H = G\phi_k H \to G\left(\begin{array}{c} 0 \\ 1 \end{array} \right) H = \left(\begin{array}{c} f \\ 1 \end{array} \right) H.$$

\box

6. New Willmore tori in S^4

As we have seen in Theorem 4.6 the only μ–Darboux transforms of the Clifford torus on \mathbb{C}/Γ are obtained by fundamental solutions $\tilde{\varphi}_k$, and in this case the μ–Darboux transform is the reparametrized and scaled Clifford torus f. To obtain new examples, we consider an n-fold covering $f : \mathbb{C}/\Gamma_n \to S^3$, $u + iv \mapsto \frac{1}{\sqrt{2}}(e^{iu} + je^{iv})$ of the Clifford torus with lattice $\Gamma_n = 2\pi n \mathbb{Z} + 2\pi ni \mathbb{Z}$, and contemplate the μ–Darboux transforms of f.

Lemma 6.1. Let $f : \mathbb{C}/\Gamma_n \to S^3$ be the n-fold covering of the Clifford torus, and $\mu = x^4 \in \mathbb{C}_n$. Then every μ–Darboux transform $\tilde{f} : \mathbb{C}/\Gamma_n \to S^3$ is Γ_n periodic if and only if $x = \frac{p+iq}{n} \in S^1$, where $(p, q) \in \mathbb{Z}^2 \setminus \{0\}$. In this case the multiplier $h : \Gamma_n \to \mathbb{C}^*$ is trivial, i.e. $h \equiv 1$.

Proof. Let $\phi = \sum_k \phi_k s_k$ be a parallel section of $d\mu$, $\mu = x^4$, with $s_k \neq 0$ for all k, where ϕ_k are the fundamental solutions (4.7). Then

$$\phi(u + 2\pi n, v) = \phi(u, v) \iff h = e^{2\pi n \lambda_k} \quad \text{for all} \quad k = 0, 1, 2, 3.$$
This implies $n(\lambda_k - \lambda_l) \in i\mathbb{Z}$ for all k, l, and as in the proof of Theorem 4.6 it is enough to consider

$$n(\lambda_0 - \lambda_1) = \frac{n(x^2 - 1)}{2x} = ip \quad \text{and} \quad n(\lambda_0 - \lambda_3) = \frac{in(x^2 + 1)}{2x} = iq$$

for some $p, q \in \mathbb{Z}$. Using (4.9) we see that these equations can be satisfied if and only if $p^2 + q^2 = n^2$, that is $x = \frac{p+iq}{n} \in S^1$. In this case

$$\lambda_k = \frac{i(\pm p \pm q + n)}{2n}$$

for all k.

For an arbitrary Pythagorean triple (p, q, n) it is known that $p \pm q$ and n are both odd, so that $\pm p \pm q + n$ is even so that $h = e^{2\pi n \lambda_k} = 1$. Since $\epsilon_k = \lambda_{k+1}$ we also see that the v–periods close.

Since the Darboux transformation preserves the geometric genus of the spectral curve and the Willmore energy [3] we have shown:

Theorem 6.2. For all Pythagorean triple (p, q, n) there exists a $\mathbb{C}P^3$ family of Willmore tori $\hat{f} : \mathbb{C}^2/\Gamma_1 \to S^4$ of spectral genus zero with Willmore energy $W(\hat{f}) = 2\pi^2 n$.

References

NEW EXAMPLES OF WILLMORE TORI IN S^4

Alexander Gouberman, Institut f"ur Technik Intelligenter Systeme (ITIS e.V.), Universität der Bundeswehr München, Fakultät für Informatik, D-85577 Neubiberg, Germany

Katrin Leschke, Department of Mathematics, University of Leicester, University Road, Leicester, LE1 7RH, UK

E-mail address: alexander.gouberman@unibw.de, k.leschke@mcs.le.ac.uk