Plain representations of Lie algebras

A.A. Baranov
Institute of Mathematics, National Academy of Sciences of Belarus
Surganova 11, Minsk 220072, Belarus
e-mail: baranov@im.bas-net.by

A.E. Zalesskii
School of Mathematics, University of East Anglia
Norwich NR4 7TJ, UK
e-mail: A.Zalesskii@uea.ac.uk

1 Introduction

In this paper we study representations of finite dimensional Lie algebras. In this case representations are not necessarily completely reducible. As the general problem is known to be of enormous complexity, we restrict ourselves with representations that particularly well behave on Levi subalgebras. We call such representations plain (Definition 1.1). Informally, we show that the theory of plain representations of a given Lie algebra L is equivalent to representation theory of finitely many finite dimensional associative algebras, also non-semisimple. The sense of this is to distinguish representations of Lie algebras that are of complexity comparable with that of representations of associative algebras. Non-plain representations are intrinsically much more complex than plain ones. We view our work as a step toward understanding this complexity phenomenon.

We restrict ourselves also with perfect Lie algebras L, i.e. such that $L = [L, L]$. In main results we assume that L is perfect and \mathfrak{sl}_2-free (which means that L has no quotient isomorphic to \mathfrak{sl}_2). The ground field F is always assumed to be algebraically closed and of characteristic 0.

Definition 1.1 Let L be a perfect finite dimensional Lie algebra over F and let V be an L-module of finite length. Let W_1, \ldots, W_k list the nontrivial composition factors of V. We say that V is plain if for each $i = 1, \ldots, k$ the following conditions hold:

1. $L/\operatorname{Ann}_L(W_i) \cong \mathfrak{sl}(W_i)$;
2. the dual L-module W_i^* does not occur in W_1, \ldots, W_k unless $\dim W_i = 2$ where W_i is selfdual.

We say that L is plain if L has a faithful plain module.

Observe that V may have trivial (one-dimensional) composition factors.

Theorem 1.2 Let L be a perfect \mathfrak{sl}_2-free finite dimensional Lie algebra over an algebraically closed field F of characteristic 0. Then there exist finitely many finite dimensional associative algebras A_i with $i = 1, \ldots, n$ and representations $\eta_i : L \rightarrow A_i$ such that $[A_i, A_i] = \eta_i(L)$ and the restrictions of all finite dimensional A_i-modules to L are plain and exhaust all plain L-modules.
For an L-module V let $\text{Irr}(V)$ denote the set of all composition factors of V (disregarding their multiplicities). For a plain L-module V the choice of the corresponding algebra A_i in Theorem 1.2 is determined by $\text{Irr}(V)$, and then $n \leq 2^k$ where k is the number of the simple components of $L/\text{Rad}L$ (see Theorem 6.10 and the proof of Theorem 1.2 for more precise information).

Unexpectedly, $\eta_i(L)$ turns out to coincide with $[A_i, A_i]$, the commutator subalgebra of A_i (under the bracket multiplication). Thanks to this, we have been able to characterize plain \mathfrak{sl}_2-free Lie algebras as those of shape $[A, A]$ where A is some finite dimensional associative algebra.

Definition 1.3 Let L be a perfect (i.e. $[L, L] = L$) finite dimensional Lie algebra over \mathbb{F}. We say that L is quasispecial if there exists an associative \mathbb{F}-algebra A such that $L \cong [A, A]$.

Theorem 1.4 Let L be a perfect finite dimensional Lie algebra over an algebraically closed field \mathbb{F} of characteristic 0. Suppose that \mathfrak{sl}_2 is not a quotient algebra of L. Then L is quasispecial if and only if there exists a faithful plain L-module.

Quasispecial Lie algebras can be viewed as natural generalization of algebras \mathfrak{sl}_n so they may be of independent interest.

A crucial part of the proof of Theorems 1.2 and 1.4 is the following result which seems to be of independent significance.

Theorem 1.5 Let $L \subset \text{End} V$ be a perfect \mathfrak{sl}_2-free Lie algebra with V being a plain L-module. Let A be the enveloping algebra of L in $\text{End} V$. Then $L = [A, A]$.

A priori, there is no hint that L cannot be smaller than $[A, A]$ (and this can happen if \mathfrak{sl}_2 is a quotient of L). So we think that Theorem 1.5 is quite unexpected.

If L is quasispecial, there can be (in general) infinitely many nonisomorphic plain L-modules of the same dimension. (This follows from the second Brauer-Thrall conjecture proved by Nazarova and Roiter [7], if one observes that the restriction to $L = [A, A]$ of any A-module is a plain L-module.) However, these possibilities are controlled in a sense by Theorem 1.5, so there is a deep relationship between plain representations of quasispecial Lie algebras and representation theory of associative algebras. We emphasize that the conditions for V to be plain are described only in terms of the composition factors of V.

We also provide a multiplicative version of Theorem 1.4 by characterizing in similar terms perfect algebraic groups that are isomorphic to the commutator groups of the unit groups of associative algebras (with identity). As above, we call such groups quasispecial, and for a perfect algebraic group G we define a plain rational G-module exactly as in Definition 1.1 (replacing \mathfrak{sl} by SL).

Theorem 1.6 Let G be a perfect algebraic group over an algebraically closed field \mathbb{F} of characteristic 0. Suppose that $SL_2(\mathbb{F})$ is not a quotient group of G. Then G is quasispecial if and only if there exists a faithful plain G-module.

Let A be an associative algebra (not necessarily containing the identity). Denote by $[A]$ the Lie algebra obtained from A under the usual bracket multiplication. To what extent A is determined by $[A]$? This problem was studied by Herstein for simple rings A (see [5]) and by his successors for prime and semiprime rings (see [6] for instance). No result is known for A not being semiprime. This problem can also be solved in the framework of the above approach.
for finite dimensional algebras A having no non-zero quotient of dimension ≤ 4. We show that (under these assumptions) the Lie algebra $L = [A, A]$ is perfect, \mathfrak{sl}_2-free, and generate A (see Theorem 6.3). Moreover, it turns out that A is determined by L almost uniquely. To be more precise, let us introduce some notation. Set

$$\text{Null}(A) = \{a \in A \mid aA = Aa = 0\},$$

i.e., $\text{Null}(A)$ is the two-sided annihilator of A in A. (Note that $\text{Null}(A) = 0$ whenever A has the identity). Let $\hat{A} = A/\text{Null}(A)$. We say that A is weakly indecomposable if \hat{A} is not a direct sum of proper (two-sided) ideals. One can easily show (see Proposition 3.6) that any finite dimensional algebra A with $A^2 = A$ can be uniquely expressed as $A_1 + \ldots + A_n$ where A_1, \ldots, A_n are weakly indecomposable ideals, $A_i^2 = A_i$, and $A_iA_j = A_jA_i = 0$ for $i \neq j$. For an algebra B we write $A \sim B$ if the weak components B_1, \ldots, B_n of B can be reordered such that $\hat{B}_i \cong \hat{A}_i$ or $\hat{B}_i \cong \hat{A}_i^{\text{op}}$ (the opposite algebra). If $A \sim B$ then we say that B is quasiisomorphic to A. Observe that A_i and the opposite algebra A_i^{op} can be nonisomorphic while the Lie algebras $[A_i]$ and $[A_i^{\text{op}}]$ are always isomorphic.

Theorem 1.7 Let A_1 and A_2 be finite dimensional associative algebras. Assume that $[A_1, A_1] \cong [A_2, A_2]$ and each A_1, A_2 has no nontrivial homomorphism into $M_2(F)$. Then $A_1 \sim A_2$. Moreover, if A_1 or A_2 is weakly indecomposable, then there is an algebra A and ideals $H_1, H_2 \subseteq \text{Null}(A)$ such that for $i = 1, 2$ we have $[A, A] \cong [A_i, A_i]$ and $A_i \cong A/H_i$ or $A_i \cong (A/H_i)^{\text{op}}$.

A similar result holds for the multiplicative groups of A_i (see Theorem 6.14).

Let L be a Lie algebra and let A be an associative enveloping algebra of L (i.e., A contains L and is generated by L). We say that A is \mathfrak{P}-enveloping for L if $[A, A] = L$. Does there exist a universal \mathfrak{P}-enveloping algebra for L? In general, the answer is “no”, even for \mathfrak{sl}_3. This is because a direct sum of plain L-modules is not necessarily a plain module. However the set \mathfrak{V} of plain L-modules is a disjoint union of finitely many subsets $\mathfrak{V}_1, \ldots, \mathfrak{V}_n$, which are closed under the direct sum operation. We show in Theorem 6.10 that if L is plain and \mathfrak{sl}_2-free, then there exist n quasisomorphic \mathfrak{P}-enveloping algebras U_1, \ldots, U_n of L such that each plain L-module $V \in \mathfrak{V}$ extends to U_i-module. Thus, the theory of plain representations of L reduces to the representation theory of algebras U_1, \ldots, U_n. If L is weakly indecomposable, we prove the following more precise result.

Theorem 1.8 Let L be a weakly indecomposable \mathfrak{sl}_2-free plain Lie algebra. Then there exists an associative algebra A with the following properties:

1. A is a weakly indecomposable \mathfrak{P}-enveloping algebra of L;
2. each \mathfrak{P}-enveloping algebra of L is a homomorphic image of A or A^{op} with the kernel lying in $\text{Null}(A)$ or $\text{Null}(A^{\text{op}})$, respectively.

Sections 2-4 contain some auxiliary material. The basic machinery is developed in Section 5 and Section 6 contains proofs of the main results.

2 Matrix algebras

Let $M_n(F)$ be the algebra of all $n \times n$ matrices over F and 1_n be its identity. Let $D \subseteq M_n(F)$ be a semisimple subalgebra containing 1_n. In this section we describe subalgebras A of $M_n(F)$ such that $DAD = A$. Note that if $1_n \in A$, then the condition $DAD = A$ is equivalent to $D \subseteq A$.

3
We denote by V the natural module for $M_n(\mathbb{F})$, so $M_n(\mathbb{F}) \cong \text{End}_\mathbb{F} V \cong V \otimes_\mathbb{F} V^*$. Since D is semisimple,

$$V = V_1 \oplus \cdots \oplus V_t$$

where V_1, \ldots, V_t are irreducible D-modules. Put $T = \{1, \ldots, t\}$. Let $\{D_\zeta \mid \zeta \in \Omega\}$ be the set of simple components of D, so

$$D = \bigoplus_{\zeta \in \Omega} D_\zeta,$$

and let W_ζ be the natural D_ζ-module. Let us denote by ν the map $T \to \Omega$ such that for each $i \in T$ the D-modules V_i and $W_{\nu(i)}$ are isomorphic. For a pair $(i, j) \in T \times T$ let $\nu(i, j)$ denote the pair $(\nu(i), \nu(j))$.

Set $n_\zeta = \dim W_\zeta$, so $n = n_\nu(1) + \cdots + n_\nu(t)$. For $\zeta, \xi \in \Omega$ we denote by $W_{\zeta \xi}$ the vector space $W_\zeta \otimes W_\xi^*$. For each $\zeta \in \Omega$ fix a basis B_ζ of W_ζ. Let B_ζ^* be the dual base of W_ζ^*. With respect to the chosen bases each $W_{\zeta \xi}$ can be identified with the space of $n_\zeta \times n_\xi$-matrices. Set $n' = \max\{n_\zeta \mid \zeta \in \Omega\}$. It is convenient to identify each $W_{\zeta \xi}$ with a subspace of the matrix algebra $M_{n'}(\mathbb{F})$ extending each $n_\zeta \times n_\xi$ matrix $X \in W_{\zeta \xi}$ to an $n' \times n'$ matrix by 0's (so X is located at the left upper corner of the extended matrix). Let $X_1 \in W_{\zeta_1 \xi_1}$ and $X_2 \in W_{\zeta_2 \xi_2}$. If $\xi_1 = \zeta_2$, define X_1X_2 as the product of the corresponding matrices in $M_{n'}(\mathbb{F})$. If $\xi_1 \neq \zeta_2$, set $X_1X_2 = 0$. Observe that if $\xi_1 = \zeta_2$, then X_1X_2 belongs to $W_{\zeta_1 \zeta_2}$ and the multiplication just defined agrees with the usual multiplication of elements from $W_{\zeta_1 \xi_1}$ and $W_{\zeta_2 \xi_2}$ for $\xi_1 = \zeta_2$:

$$(Y_1 \otimes \varphi_1)(Y_2 \otimes \varphi_2) = \varphi_1(Y_2)Y_1 \otimes \varphi_2 \in W_{\zeta_1 \xi_2}$$

where $Y_i \in W_{\zeta_i}$ and $\varphi_i \in W_{\xi_i}^*$ for $i = 1, 2$. We get an algebra structure on the vector space

$$W = \bigoplus_{\zeta, \xi \in \Omega} W_{\zeta \xi}. \quad (1)$$

We denote by $\{e_{ij} \mid 1 \leq i, j \leq n'\}$ the standard basis of $M_{n'}(\mathbb{F})$ consisting of matrix units, so for each pair $\zeta, \xi \in \Omega$ the set $\{e_{ij} \mid 1 \leq i \leq n_\zeta, 1 \leq j \leq n_\xi\}$ is the basis of $W_{\zeta \xi}$. For $\zeta, \xi \in \Omega$ we denote by $\Lambda(\zeta, \xi)$ the vector space of all $t \times t$ matrices $\lambda = (\lambda_{ij}) \in M_t(\mathbb{F})$ such that $\lambda_{ij} = 0$ if $\nu(i, j) \neq (\zeta, \xi)$. Observe that

$$M_t(\mathbb{F}) = \bigoplus_{\zeta, \xi \in \Omega} \Lambda(\zeta, \xi). \quad (2)$$

Lemma 2.1 Let $\Lambda_1 \in \Lambda(\zeta_1, \xi_1)$ and $\Lambda_2 \in \Lambda(\zeta_2, \xi_2)$. If $\Lambda_1\Lambda_2 \neq 0$, then $\xi_1 = \zeta_2$ and $\Lambda_1\Lambda_2 \in \Lambda(\zeta_1, \xi_2)$.

Proof. Let $\Lambda_1 = (\lambda_{ij}^1)$ and $\Lambda_2 = (\lambda_{ij}^2)$. Then $(\Lambda_1\Lambda_2)_{ij} = \sum_{s=1}^t \lambda_{is}^1\lambda_{sj}^2$. If $\xi_1 \neq \zeta_2$, then all the summands are zeros for all i, j, so $\Lambda_1\Lambda_2 = 0$. If $\nu(i) \neq \zeta_1$ or $\nu(j) \neq \xi_2$, then all the summands are zeros as well. Therefore $\Lambda_1\Lambda_2 \in \Lambda(\zeta_1, \xi_2)$. \(\square \)

Let us define a vector space \mathcal{M}_D as follows:

$$\mathcal{M}_D = \bigoplus_{\zeta, \xi \in \Omega} W_{\zeta \xi} \otimes_\mathbb{F} \Lambda(\zeta, \xi). \quad (3)$$

Using decompositions (1) and (2), the properties of multiplication in W, and Lemma 2.1, one can observe that \mathcal{M}_D is a subalgebra of the algebra $W \otimes_\mathbb{F} M_t(\mathbb{F})$.

4
We assume that the standard basis B in V is such that $B \cap V_i$ is a basis in V_i for each $i \in T$ and $\nu_i(B \cap V_i) = B_{\nu(i)}$ where ν_i is a D-module isomorphism from V_i to $W_{\nu(i)}$. In particular, for each $d \in D$ the matrices $d|_{V_i}$ and $d|_{W_{\nu(i)}}$ coincide. The decomposition

$$\text{End}_D V = V \otimes V^* = \bigoplus_{i,j=1}^t V_i \otimes V_j^*$$

induce a block structure on the elements of $M_n(\mathbb{F})$, so we view $M_n(\mathbb{F})$ as the set of $t \times t$ block matrices. For $i, j \in T$ let π_{ij} denote the projection of a matrix $X \in M_n(\mathbb{F})$ to its (i, j)-block submatrix. We identify $\pi_{ij}(X)$ with the corresponding matrix in $W_{\nu(i)\nu(j)}$. Let $\{\varepsilon_{ij} | 1 \leq i, j \leq t\}$ be the standard basis of $M_t(\mathbb{F})$ (consisting of matrix units). Observe that $\{\varepsilon_{ij} | \nu(i, j) = (\zeta, \xi)\}$ is a basis of $\Lambda(\zeta, \xi)$. We have a natural vector space isomorphism $\varphi : M_n(\mathbb{F}) \rightarrow M_D$ defined by

$$\varphi(X) = \sum_{i, j \in T} \pi_{ij}(X) \otimes \varepsilon_{ij}.$$

Proposition 2.2 The map φ is an algebra isomorphism of $M_n(\mathbb{F})$ onto M_D.

Proof. This can be easily verified using the standard bases of $M_n(\mathbb{F})$ and M_D. \qed

We identify the algebras M_D and $M_n(\mathbb{F})$. By Lemma 2.1, $\Lambda(\zeta, \zeta)$ is a subalgebra of $M_t(\mathbb{F})$. Set $\varepsilon_\zeta = \sum_{\nu = \zeta}^t \varepsilon_{ii}$. Then for all $\zeta, \xi \in \Omega$ and all $\Lambda \in \Lambda(\zeta, \xi)$ we have $\varepsilon_\zeta \Lambda = \Lambda \varepsilon_\zeta = \Lambda$. In particular, ε_ζ is the identity of the algebra $\Lambda(\zeta, \zeta)$, and $\varepsilon = \sum_{\zeta \in \Omega} \varepsilon_\zeta = \sum_{i=1}^t \varepsilon_{ii}$ is the identity of $M_t(\mathbb{F})$. Clearly,

$$D_\zeta = W_{\zeta \zeta} \otimes \varepsilon_\zeta \tag{4}$$

for $\zeta \in \Omega$. We shall often identify the algebras D_ζ and $W_{\zeta \zeta}$.

Right and left multiplications by elements of D induce a structure of an $D \otimes D^{op}$-module on $M_n(\mathbb{F})$. We have

$$D \otimes D^{op} = \bigoplus_{\zeta, \xi \in \Omega} D_{\zeta \xi}$$

where $D_{\zeta \xi} = D_\zeta \otimes D^{op}_\xi$ are the simple components of $D \otimes D^{op}$. The following is obvious.

Lemma 2.3 The formula (3) is the decomposition of the $D \otimes D^{op}$-module $M_n(\mathbb{F}) \cong M_D$ into its homogeneous components.

Remark 2.4 Identifying each $D_{\zeta \xi}$ with the algebra $W_{\zeta \zeta} \otimes W^{op}_{\xi \xi}$ and any $D_{\zeta \xi}$-module $M = W_{\zeta \zeta} \otimes \Lambda (\Lambda \in \Lambda(\zeta, \xi))$ with $W_{\zeta \xi}$ we can represent the action of $D_{\zeta \xi}$ on M in the following form: $(X_{\zeta \zeta} \otimes X_{\xi \xi})X_{\zeta \xi} = X_{\zeta \zeta}X_{\xi \xi}X_{\xi \xi}$ where X_{ij} is any matrix from $W_{ij} = W_i \otimes W_j^{*}$ for $i, j \in \{\zeta, \xi\}$.

Proposition 2.5 Let A be an associative subalgebra of $M_n(\mathbb{F})$ such that $DAD = A$. Then

$$A = \bigoplus_{\zeta, \xi \in \Omega} W_{\zeta \zeta} \otimes \Lambda_A(\zeta, \xi)$$

where $\Lambda_A(\zeta, \xi)$ is a subspace of $\Lambda(\zeta, \xi)$.

Proof. It suffices to observe that A is a $D \otimes D^{op}$-submodule of $M_n(\mathbb{F})$ and to apply Lemma 2.3. \qed

5
Remark 2.6 If D is a maximal semisimple subalgebra of A, then the algebra $\bigoplus_{\zeta, \xi \in \Omega} \Lambda_A(\zeta, \xi)$ is isomorphic to the basic algebra of A (see [8, §6.6]).

Lemma 2.7 Let A be an associative subalgebra of $M_n(F)$ and $D = F1_n + D'$ where D' is a semisimple subalgebra of A. Then for any ideal B of A we have

$$B = \bigoplus_{\zeta, \xi \in \Omega} W_{\xi} \otimes \Lambda_B(\zeta, \xi)$$

where $\Lambda_B(\zeta, \xi)$ is a subspace of $\Lambda(\zeta, \xi)$.

Proof. It suffices to note that $DBD = B$ and to apply Proposition 2.5.

3 Weak decompositions

In this section we study weak decompositions of associative and Lie algebras. Let A be an associative algebra. The algebra A is called perfect if $A^2 = A$. Recall that Null(A) = $\{a \in A \mid aA = Aa = 0\}$. We call Null($A$) the null-radical of A. The following proposition shows that the null-radical has radical-like properties.

Proposition 3.1 Let A be perfect, $N \subseteq$ Null(A), and $A' = A/N$. Let $N' \subseteq$ Null(A') and \bar{N} be the complete inverse image of N' in A. Then $\bar{N} \subseteq$ Null(A). In particular, Null($A/Null(A)$) = 0.

Proof. We have $A\bar{N} + \bar{N}A = A^2\bar{N} + \bar{N}A^2 \subseteq AN + NA = 0$, as required.

Definition 3.2 Let A and A' be associative algebras and $\pi : A' \to A$ be a surjective homomorphism. The pair (π, A') (or, simply, A') is called a null-extension of A if Ker(π) \subseteq Null(A'). A null-extension A' is called a null-covering of A if A' is perfect. A null-covering (ρ, U) is universal if for each null-covering (π, A') of A there is a homomorphism $\tau : U \to A'$ such that $\pi \tau = \rho$. An algebra A is called null-closed if A is its own universal null-covering.

Standard arguments show that an algebra A admits a universal null-covering if and only if A is perfect. In that case the universal null-covering is unique and can be constructed as follows. Denote by M the vector space $A \otimes A$ and by U the vector space $A \oplus M$. The space U can be viewed as an associative algebra if we set $AM = MA = 0$, $M^2 = 0$, and $ab = a \cdot b + a \otimes_A b$ for $a, b \in A$ where $a \cdot b$ is the product in A. Then the algebra U^2 is the universal null-covering of A. We state the following standard properties of null-extensions.

Proposition 3.3 (1) The universal null-covering of a perfect algebra is null-closed.

(2) Every null-extension of a null-closed algebra splits.

(3) If A is null-closed and N is a subspace of Null(A), then A is the universal covering of A/N.

Proof. (1) This follows from Proposition 3.1.

(2) Let (π, B) be a null-extension of A. Set $\tau = \pi|_{B^2}$. Observe that B^2 is perfect, so (τ, B^2) is a null-covering of A. Now (1) implies that τ is a bijection and $B = B^2 \oplus \ker \pi$.

(3) This is obvious.
Lemma 3.4 Let A be a perfect algebra and let A_1, \ldots, A_n be perfect ideals of A such that $A = A_1 + \cdots + A_n$. Then the following conditions are equivalent.

(W1) $A_i \cap A_j \subseteq \text{Null}(A)$ for all $i \neq j$.
(W2) $A_i A_j = 0$ for all $i \neq j$.

Proof. (W1)\Rightarrow(W2): $A_i A_j = A_i (A_j \cap A_i) A_j = 0$.
(W2)\Rightarrow(W1): For each k we have $(A_i \cap A_j) A_k \subseteq (A_i A_k) \cap (A_j A_k) = 0$. Therefore $(A_i \cap A_j) A = 0$. Similarly, $A(A_i \cap A_j) = 0$. \qed

Definition 3.5 A perfect algebra A is called weakly decomposable if there is a nontrivial (weak) decomposition as in Lemma 3.4 (which will be denoted by $A = A_1 \uplus \cdots \uplus A_n$) such that (W1) or (W2) holds. Otherwise A is called weakly indecomposable. If each algebra A_i for $i = 1, \ldots, n$ is weakly indecomposable, then the decomposition is called complete.

The following is standard.

Proposition 3.6 Each finite dimensional perfect algebra has a unique weak decomposition $A = A_1 \uplus \cdots \uplus A_n$ into weakly indecomposable ideals A_i. Moreover, if $\text{Null}(A) = 0$ (resp., A is null-closed), then the sum is direct and $\text{Null}(A_i) = 0$ (resp., A_i is null-closed) for each $i = 1, \ldots, n$.

Let A be a perfect subalgebra of $M_n(\mathbb{F})$ and D' be a Levi subalgebra of A. Set $D = D' + \mathbb{F}1_n$. Clearly, D is semisimple and D' is an ideal of D. As in Section 2, let $\{D_\zeta \mid \zeta \in \Omega\}$ be the set of simple components of D. Since D is semisimple, Ω can be expressed as a disjoint union $\Omega = \biguplus_{\zeta \in \Omega'} D_\zeta$. Observe that Ω_0 is nonempty if and only if $1_n \notin A$. In that case Ω_0 consists of a single element, say 0. As $DAD = A$, we have a decomposition as in Proposition 2.5. If $1_n \in A$, then $\text{Null}(A) = 0$. Assume that $1_n \notin A$. Then, obviously, $\text{Null}(A) \subseteq \Lambda_A(0, 0)$. Set

$$
\Lambda_A^0 = \sum_{\zeta \in \Omega'} \Lambda_A(0, \zeta) \Lambda_A(\zeta, 0) \subseteq \Lambda_A(0, 0).
$$

Proposition 3.7 Let $A \subseteq M_n(\mathbb{F})$ be as above and $1_n \notin A$. Then $\Lambda_A^0 = \Lambda_A(0, 0)$. In particular, $\text{Null}(A) \subseteq W_{00} \otimes \Lambda_A^0$.

Proof. It suffices to note that

$$
A' = \left(\bigoplus_{(\zeta, \xi) \neq (0, 0)} W_{\zeta\xi} \otimes \Lambda_A(\zeta, \xi) \right) \oplus (W_{00} \otimes \Lambda_A^0)
$$

is an ideal of A containing the Levi subalgebra D', so A/A' is nilpotent. \qed

Let $\zeta, \xi \in \Omega$. We write $\zeta \sim \xi$ if there exist $\eta_1, \ldots, \eta_m \in \Omega'$ such that $\eta_1 = \zeta$, $\eta_m = \xi$, and for each $1 \leq i \leq m - 1$ the $D \otimes D^{op}$-module A contains a nonzero $D_{\eta_i, \eta_{i+1}}$- or D_{η_{i+1}, η_i}-module, equivalently, $\Lambda_A(\eta_i, \eta_{i+1})$ or $\Lambda_A(\eta_{i+1}, \eta_i)$ is nonzero. Obviously, \sim is an equivalence relation. Let $\Omega' = \Omega_1 \uplus \cdots \uplus \Omega_m$ be the partition of Ω' into equivalence classes and let A_i be the subalgebra of A generated by all $W_{\zeta\xi} \otimes \Lambda_A(\zeta, \xi)$ with $\zeta, \xi \in \Omega_i \cup \{0\}$ and $(\zeta, \xi) \neq (0, 0)$.

7
Proposition 3.8 Set $\Gamma_i = (\Omega_i \times \Omega_i) \cup \{0\} \times \Omega_i \cup (\Omega_i \times \{0\})$. Then

$$A_i = \left(\bigoplus_{(\zeta, \xi) \in \Gamma_i} W_{\zeta \xi} \otimes \Lambda_A(\zeta, \xi) \right) \oplus W_0 \otimes \sum_{\zeta \in \Omega} \Lambda_A(0, \zeta) \Lambda_A(\zeta, 0) \quad (1 \leq i \leq m).$$

Moreover, $A = A_1 \uplus \cdots \uplus A_n$ is the complete weak decomposition of A.

Proof. First observe that $A_iA_j = 0$ for $i \neq j$ (since this is true for the generating sets). Now as in the proof of Proposition 3.7, we get (5) and conclude that all A_i are perfect. It follows from Proposition 3.7 and (5) that $A = A_1 + \cdots + A_n$. Therefore $A = A_1 \uplus \cdots \uplus A_n$. It remains to show that each A_i is weakly indecomposable. Assume that $A_i = B_1 \uplus B_2$ is a nontrivial weak decomposition. Note that each B_k is an ideal of A. Therefore by Lemma 2.7, there is a partition $\Omega_i = \Omega_i^1 \cup \Omega_i^2$ such that for each $\zeta \in \Omega_i^k$ we have $D_\zeta \subseteq B_k$. By assumption, there exist $\zeta \in \Omega_i^1$ and $\xi \in \Omega_i^2$ such that $\Lambda_A(\zeta, \xi) \neq 0$ or $\Lambda_A(\xi, \zeta) \neq 0$. Therefore $0 \neq B_1A_iB_2 \subseteq B_1B_2$ or $0 \neq B_2A_iB_1 \subseteq B_2B_1$, which yields a contradiction. \hfill \Box

One can introduce a notion of weakly indecomposable Lie algebras as well. The role of the null-radical for a Lie algebra is played by its center. The following is well known.

Lemma 3.9 Let L be a perfect Lie algebra and let L_1, \ldots, L_n be perfect ideals of L such that $L = L_1 + \cdots + L_n$. Then the following conditions are equivalent.

- (L1) $L_i \cap L_j \subseteq Z(L)$ for all $i \neq j$.
- (L2) $[L_i, L_j] = 0$ for all $i \neq j$.

Definition 3.10 A perfect Lie algebra L is called weakly decomposable if there is a nontrivial (weak) decomposition as in Lemma 3.9 (which will be denoted by $L = L_1 \uplus \cdots \uplus L_n$) such that (L1) or (L2) holds. Otherwise, L is called weakly indecomposable. If each algebra L_i in the decomposition is weakly indecomposable, then the decomposition is called complete.

Proposition 3.11 Each finite dimensional perfect Lie algebra has a unique weak decomposition $L = L_1 \uplus \cdots \uplus L_n$ into weakly indecomposable ideals L_i.

4 Normal submodules of $[M_n(\mathbb{F})]$

Let S be a semisimple Lie subalgebra of $[M_n(\mathbb{F})] = \mathfrak{gl}_n(\mathbb{F})$. In this section we describe irreducible S-submodules in $[M_n(\mathbb{F})]$ under the adjoint action (under some additional assumptions).

Below S_1, \ldots, S_k are the simple components of S, so $S = S_1 \oplus \cdots \oplus S_k$. Let V be the natural module for $M_n(\mathbb{F})$. As V is completely reducible, $V = V_1 \oplus \cdots \oplus V_t$ where V_1, \ldots, V_t are irreducible S-modules. Let $\{W_\zeta \mid \zeta \in \Omega\}$ be a set of representatives of the isomorphism classes of irreducible S-submodules of V. Set $\Omega' = \{\zeta \in \Omega \mid W_\zeta$ is nontrivial}. If $\Omega \neq \Omega'$, then the set $\Omega \setminus \Omega'$ consists of a single element, which will be denoted by 0. In other words, we use the notation W_0 for the trivial one-dimensional S-module. We denote by $\mathcal{E}(S)$ the enveloping algebra of S in $M_n(\mathbb{F})$, i.e. the associative subalgebra generated by S. Set $D = \mathcal{E}(S) + \mathbb{F}1_n$. Clearly, D is semisimple, and the simple components of D are in a bijective correspondence with isomorphism classes of irreducible submodules of V. So

$$D = \bigoplus_{\zeta \in \Omega} D_\zeta$$
with $D_\zeta \cong \text{End}_W\zeta$. The enveloping algebra $\mathcal{E}(S)$ is a subalgebra of D and

$$\mathcal{E}(S) = \bigoplus_{\zeta \in \Omega} D_\zeta.$$

The Lie algebra $[M_n(\mathbb{F})]$ is an S-module under the adjoint action. Let $\varphi : M_n(\mathbb{F}) \to M_D$ be the canonical isomorphism (see Proposition 2.2). Observe that the adjoint action of S on M_D induced by φ agrees with the natural action of S on the direct summands $W_{\zeta\xi} \otimes \Lambda(\zeta, \xi)$ of M_D (see (3)): we just view $W_{\zeta\xi} \otimes \Lambda(\zeta, \xi)$ as the tensor product of the S-module $W_{\zeta\xi} = W_\zeta \otimes W_\xi^*$ and the trivial S-module $\Lambda(\zeta, \xi)$.

Definition 4.1 A nonzero S-submodule M of $M_n(\mathbb{F})$ is called normal if there exist $\zeta, \xi \in \Omega$, a matrix $\Lambda_M \in \Lambda(\zeta, \xi)$, and an S-submodule W_M of $W_{\zeta\xi}$ such that $M = W_M \otimes \Lambda_M$. Note that $M \cong W_M$ as S-modules. If M is normal then we denote by \bar{M} the module $W_{\zeta\xi} \otimes \Lambda_M$.

Note that normal S-module can be trivial. If M is normal, then the corresponding pair (ζ, ξ) is determined uniquely and is called the type of M. The matrix Λ_M is unique up to a scalar multiple.

Recall that $D = \mathcal{E}(S) + \mathbb{F}1_n$. Therefore Lemma 2.3 implies the following.

Lemma 4.2 Let M be a normal S-submodule of $M_n(\mathbb{F})$. Then $(\mathcal{E}(S) + \mathbb{F}1_n)M(\mathcal{E}(S) + \mathbb{F}1_n) = M$.

If M and N are S-submodules in $M_n(\mathbb{F})$, we denote by MN and $[M, N]$ the vector spaces spanned by all products xy and $[x, y] = xy - yx$, respectively $(x \in M, y \in N)$. In fact, MN and $[M, N]$ are S-modules, since for $s \in S$ we have

$$[s, xy] = [s, x]y + x[s, y],$$

$$[s, [x, y]] = [[s, x], y] + [x, [s, y]].$$

Lemma 4.3 Let $M = W_M \otimes \Lambda_M$ and $N = W_N \otimes \Lambda_N$ be normal submodules of $M_n(\mathbb{F})$ of types (ζ_1, ξ_1) and (ζ_2, ξ_2), respectively. If $MN \neq 0$, then $\xi_1 = \xi_2$ and $M N = W_M W_N \otimes \Lambda_M \Lambda_N$ is normal of type (ζ_1, ξ_2).

Proof. This follows from the properties of multiplication in M_D. \hfill \Box

Note that in view of Lemma 4.3 the normal submodules form a semigroup under the multiplication (if we add the zero module).

Proposition 4.4 Assume that there is a bijection between the simple components of S and isomorphism classes of nontrivial irreducible submodules of V such that for each $\zeta \in \Omega = \{1, \ldots, k\}$ the following conditions hold:

(I) $\text{Ann}_S W_\zeta = \bigoplus_{m \neq \zeta} S_m$; in particular, W_ζ can be considered as an S_ζ-module;

(II) $W_{\zeta\zeta} = W_\zeta \otimes W_\zeta^*$ contains no submodule isomorphic to W_ζ or W_ζ^*;

(III) $W_\zeta \not\cong W_\zeta^*$ as S-modules (and S_ζ-modules);

(IV) each nontrivial composition factor of $W_{\zeta\zeta}$ appears with multiplicity 1.

Then each nontrivial irreducible S-submodule M of $M_n(\mathbb{F})$ is normal, i.e. $M = W_M \otimes \Lambda_M$ where $W_M \subseteq W_{\zeta\zeta}$ and $\Lambda_M \in \Lambda(\zeta, \xi)$ for some $\zeta, \xi \in \Omega$. Moreover, $W_M = W_{\zeta\zeta}$ if $\zeta \neq \xi$.

Lemma 5.2. Let \(\zeta, \xi \in \Omega \) such that \(M \subseteq W_{\zeta \xi} \otimes \Lambda(\zeta, \xi) \). It follows from assumptions (II) and (III) that any two nontrivial irreducible submodules of different summands are not isomorphic. Therefore there exist unique \(\zeta, \xi \in \Omega \) such that \(M \subseteq W_{\zeta \xi} \otimes \Lambda(\zeta, \xi) \). If \(\zeta \neq \xi \), then \(W_{\zeta \xi} \) is irreducible, so \(M = W_{\zeta \xi} \otimes \Lambda_M \) for some \(\Lambda_M \). If \(\zeta = \xi \), then the proposition follows from (IV).

\[\square \]

5 Enveloping algebras of plain Lie algebras

Let \(L \subset M_n(\mathbb{F}) \) be a perfect Lie algebra. Then \(L = S \oplus R \) where \(S \) is a maximal semisimple subalgebra and \(R \) is the radical of \(L \). As above, we denote by \(S_1, \ldots, S_k \) the simple components of \(S \) and by \(\mathcal{E}(L) \) the enveloping algebra of \(L \) in \(M_n(\mathbb{F}) \). Let \(V \) be the natural \(M_n(\mathbb{F}) \)-module, \(\{ W_\zeta \mid \zeta \in \Omega \} \) be a set of representatives of the isomorphism classes of all irreducible \(L \)-submodules of \(V \), and \(\Omega' = \{ \zeta \in \Omega \mid W_\zeta \text{ is nontrivial} \} \). In this section we assume that \(L \) is perfect \(sl_2 \)-free and \(V \) is a plain \(L \)-module. In other words, we assume that the set \(\Omega' \) is identified with the set \(\{ 1, \ldots, k \} \) (which labels the simple components of \(S \)) such that

- \(\text{Ann}_S W_\zeta = \bigoplus_{m \neq \zeta} S_m \) for \(\zeta = 1, \ldots, k \);
- \(S_\zeta \cong \mathfrak{sl}_n(\mathbb{F}) \) with \(n_\zeta = \dim W_\zeta \geq 3 \) for \(\zeta = 1, \ldots, k \).

In particular, \(W_\zeta \) is the natural \(S_\zeta \)-module or dual to it. Then one can easily verify that the conditions (I)-(IV) of Proposition 4.4 hold. Therefore each nontrivial irreducible \(S \)-submodule of \(M_n(\mathbb{F}) \) is normal. Note that we exclude the components isomorphic to \(\mathfrak{sl}_2(\mathbb{F}) \) in order to satisfy (III) of Proposition 4.4 (the natural \(\mathfrak{sl}_2(\mathbb{F}) \)-module is isomorphic to its dual). The aim of this section is to prove that \([\mathcal{E}(L), \mathcal{E}(L)] = L \).

We denote by \(L_L \) the adjoint module for \(L \) and by \(sL \) its restriction to \(S \). Let \(R_0 \) be the sum of all trivial submodules of \(sL \) and let \(L_1 \) be the sum of all nontrivial irreducible submodules. Since \(sL \) is completely reducible, \(sL = L_1 \oplus R_0 \). Observe that \(R_0 \subset R \).

Let \(M \) be a nontrivial irreducible submodule of \(sL \). By Proposition 4.4, \(M \) is normal, i.e. there exist \(\zeta, \xi \in \Omega, \Lambda_M \in \Lambda(\zeta, \xi) \), and an \(S \)-submodule \(W_M \) of \(W_{\zeta \xi} \) isomorphic to \(M \) such that \(M = W_M \otimes \Lambda_M \). If \(\zeta \neq \xi \), then \(W_{\zeta \xi} \) is irreducible, so \(M = M = W_{\zeta \xi} \otimes \Lambda_M \) (see Definition 4.1). Denote by \(W'_M \) the subspace of matrices in \(W_{\zeta \xi} \) with zero traces and by \(I \) the identity matrix. Then \(W'_M \) and \(FI \) are irreducible \(S \)-submodules of \(W_{\zeta \xi} \) for \(\zeta \neq 0 \) and \(W_{\zeta \xi} = W'_M \oplus FI \). If \(\zeta = \xi \), then we have \(M = W'_M \otimes \Lambda_M \), since \(M \) is nontrivial. It is convenient to set \(W'_M = W_{\zeta \xi} \) for \(\zeta \neq \xi \), so \(M = W_{\zeta \xi} \otimes \Lambda_M \) for any \(\zeta \) and \(\xi \). We have proved the following lemma.

Lemma 5.1. Let \(M \) be a nontrivial irreducible submodule of \(sL \). Then \(M = W'_M \otimes \Lambda_M \) for some \(\zeta, \xi \in \Omega \) and \(\Lambda_M \in \Lambda(\zeta, \xi) \).

Let \(\mathfrak{M} \) be the set of all nontrivial irreducible submodules of \(sL \). Put

\[L_1 = \sum_{M \in \mathfrak{M}} M. \]

Lemma 5.2. Let \(\zeta, \xi \in \Omega \) and \(x \in L \). Let \(x_{\zeta \xi} \) be the projection of \(x \) into \(W_{\zeta \xi} \otimes \Lambda(\zeta, \xi) \). Assume \(x_{\zeta \xi} \neq 0 \). Express \(x_{\zeta \xi} = X_1 \otimes \Lambda_1 + \cdots + X_m \otimes \Lambda_m \) where \(X_1, \ldots, X_m \in W_{\zeta \xi} \) are linearly independent. If \(\zeta = \xi \), assume additionally that the matrices \(I, X_1, \ldots, X_m \in W_{\zeta \xi} \) are linearly independent. Then \(W_{\zeta \xi} \otimes \Lambda_i \subseteq L_1 \) for each \(i = 1, \ldots, m \).
Proof. Let \(M \) be the \(S \)-submodule of \(L \) generated by \(x \). Then \(M = M^0 \oplus M' \) where \(M^0 \) is a trivial \(S \)-module and \(M' = M_1 \oplus \cdots \oplus M_i \) is a sum of nontrivial irreducible \(S \)-modules. Set \(M' = M_1 + \cdots + M_i \subseteq L_1 \). Let \(M_{\xi}' \) and \(M_{\xi}'' \) be the projections of \(M^0 \) and \(M' \), respectively, to \(W_{\xi} \ominus \Lambda(\zeta, \xi) \). It follows from the definition that \(M_{\xi}' = W_{\xi} \ominus \Lambda_M(\zeta, \xi) \subseteq L_1 \) where \(\Lambda_M(\zeta, \xi) \) is a subspace of \(\Lambda(\zeta, \xi) \). Clearly, it suffices to show that \(\Lambda_i \in \Lambda_M(\zeta, \xi) \) for each \(i = 1, \ldots, m \). Assume that this is not the case. Reordering the indices one can assume that \(\{1, \ldots, m' \} \) is a maximal subset of \(\{1, \ldots, m \} \) such that \(\Lambda_1, \ldots, \Lambda_{m'} \) are linearly independent modulo \(\Lambda_M(\zeta, \xi) \). Then the image of \(x_{\xi} \) in the quotient \(W_{\xi} \ominus \Lambda_M(\zeta, \xi) \) is \(X_1 \ominus \Lambda_1' + \cdots + X_{m'} \ominus \Lambda_{m'}' \), where \(X_1 = X_1 + \sum_{j=m'+1}^{m} \lambda_j X_j \) and \(\Lambda_i' \) is the image of \(\Lambda_i \) in \(\Lambda_M(\zeta, \xi)/\Lambda_M(\zeta, \xi) \). Observe that \(M_{\xi}' \) is either 0 (for \(\zeta \neq \xi \)) or lies in \(FL \ominus \Lambda_1(\zeta, \xi) \) (for \(\zeta = \xi \)). As \(X_1, \ldots, X_m \) (resp. \(1, X_1, \ldots, X_m \)) are linearly independent for \(\zeta \neq \xi \) (resp. \(\zeta = \xi \)), we get that \(x_{\xi} \notin M_{\xi}' + M_{\xi}'' \), which contradicts the assumption. The lemma follows. \(\square \)

Lemma 5.3 Let \(M_1 \) and \(M_2 \) be nontrivial irreducible submodules of \(S_L \). Then \(M_1 \cap M_2 \subseteq L_1 \), except possibly in the case where \(M_1 \) and \(M_2 \) are of types \((0, \xi) \) and \((\xi, 0) \), respectively. In the exceptional case \(M_1 M_2 \subseteq L_1 + R_0 \).

Proof. By Lemma 5.1, \(M_i = W_{\zeta_i} \otimes \Lambda_i \) where \(i = 1, 2 \) and \((\zeta_i, \xi_i) \) is the type of \(M_i \). One can assume that \(M_1 M_2 \neq 0 \). Since \(M_i = W_{\zeta_i} \otimes \Lambda_i \) for \(i = 1, 2 \) is normal, by Lemma 4.3, \(\xi_1 = \zeta_2 \), \(\Lambda = \Lambda_1 \Lambda_2 \) and \(M_1 M_2 \subseteq W_{\xi_1} \Lambda \).

Assume that \((\zeta_1, \xi_2) \neq (0, 0) \). We shall use Lemma 5.2, so it suffices to find \(x \in L \) with nonzero projection \(X \otimes \Lambda \) into \(W_{\xi_1} \Lambda \) such that \(X \) is not scalar.

For \(i = 1, 2 \) let \(x_i = x_i \otimes \Lambda_i \in M_i \) with \(x_i \in W_{\zeta_i} \). Then

\[
[x_1, x_2] = X_1 X_2 - X_2 X_1 \otimes \Lambda' \subseteq L,
\]

where \(\Lambda' = \Lambda \Lambda_1 \Lambda_2 \). Recall that we identify all \(W_{\xi} \) with the corresponding subspaces of \(M_{\nu}(F) \) and \(\{e_{ij}\}_{i,j=1}^{n'} \) is the basis of \(M_{\nu}(F) \) consisting of matrix units (see Section 2). Assume that \(\zeta_1 \neq \xi_2 \). Then \(\Lambda' \neq 0 \).

Set

\[
X_i = e_{11} - \delta_{\xi_1, \xi_2} e_{22}.
\]

Then \(X_i \in W_{\zeta_i} \), for \(i = 1, 2 \), and \(X_1 X_2 = e_{11} \neq 0 \) (as \(\delta_{\xi_1, \xi_2} = 0 \)). Hence \(x = [x_1, x_2] = e_{11} \otimes \Lambda \in L_1 \), as required. Therefore, one can suppose that \(\zeta_1 = \xi_2 = \zeta \) (recall also that \(\xi_1 = \zeta_2 = \xi \)). Assume that \(\zeta = \xi \). Since \(M \) and \(\Lambda \) are nontrivial, \(\Lambda \neq 0 \) and \(W_{\xi} \) is the set of all \(n \times n \) matrices with \(n \geq 3 \). Set \(X_1 = e_{12} \) and \(X_2 = e_{23} \). Then \(X_1 X_2 = e_{13} \) and \(X_2 X_1 = 0 \), so \(x = [x_1, x_2] = e_{13} \otimes \Lambda \in L_1 \), as required. Therefore one can suppose that \(\zeta \neq \xi \). Recall also that by assumption, \(\zeta \neq 0 \).

Now consider the exceptional case: \(\zeta_1 = \xi_2 = 0 \) and \(\xi_1 = \zeta_2 = \xi \neq 0 \). Arguing as above one can assume that \(\Lambda' \neq 0 \). Set \(X_1 = X_2 = e_{11} \). Then \(X_1 X_2 = X_2 X_1 = e_{11} \neq 0 \). As \(\xi \neq 0 \), by Lemma 5.2, \(W_{\xi} \Lambda \subseteq L_1 \). Since \([x_1, x_2] \) has a nonzero projection to \(W_0 \otimes \Lambda \), we have

\[
M_1 M_2 = W_0 \otimes \Lambda \subseteq F[x_1, x_2] + W_{\xi_1} \Lambda' \subseteq R_0 + L_1,
\]

as required. \(\square \)

Set

\[
\mathcal{E}_0 = \sum PQ
\]

where \(P \) and \(Q \) run over all pairs of irreducible submodules in \(L_1 \) of types \((0, \xi)\) and \((\xi, 0)\), respectively, with \(\xi \) running over \(\Omega' \).
Lemma 5.4 Let M_1, \ldots, M_d be nontrivial irreducible submodules of L. Then $M_1 \ldots M_d \subseteq \bar{L}_1 + \xi_0$.

Proof. Proceed by induction on d, the case $d = 1$ being trivial. The case $d = 2$ immediately follows from Lemma 5.3. Suppose that $d \geq 3$. Let (ζ, ξ) be the type of M_2. Using Lemma 5.3, we obtain that either $\xi \neq 0$ and $M_1 M_2 \subseteq \bar{L}_1$ or $\zeta \neq 0$ and $M_2 M_3 \subseteq \bar{L}_1$, so we can apply the induction assumption.

Lemma 5.5 Let L be a finite dimensional perfect Lie algebra, S a Levi subalgebra of L. Then there exist nontrivial irreducible S-submodules of L that generate L as an algebra.

Proof. Express L in the form $L = S \oplus R$ where $R = \text{Rad } L$. Pick irreducible S-submodules M_1, \ldots, M_k of R such that $R = M_1 \oplus \cdots \oplus M_k \oplus [R, R]$. Since L is perfect, all M_i are nontrivial and R is nilpotent. As R is nilpotent, the vector space $M_1 + \cdots + M_k$ generates R as an algebra (see [3, ch. I, §4, exercise 4]). Therefore, the simple components of S and M_1, \ldots, M_k generate L.

Proposition 5.6 We have

(i) $\mathcal{E}(L) = \bar{L}_1 + \mathcal{E}_0$;
(ii) $\mathcal{E}(L) = \bar{L}_1 + R_0$;
(iii) $[\mathcal{E}(L), \mathcal{E}(L)] = L$.

Proof. (i). Set $A = \bar{L}_1 + \mathcal{E}_0$. By Lemma 4.2, for each nontrivial irreducible submodule M of L we have $M \subseteq \mathcal{E}(L)$. Therefore, $A \subseteq \mathcal{E}(L)$. By Lemma 5.5, L is generated by nontrivial irreducible S-submodules, hence $\mathcal{E}(L)$ does. Thus by Lemma 5.4, $\mathcal{E}(L) \subseteq A$, so $\mathcal{E}(L) = A$.

(ii). By Lemma 5.3, $\mathcal{E}_0 \subseteq \bar{L}_1 + R_0$. Thus

$$\mathcal{E}(L) = \bar{L}_1 + \mathcal{E}_0 \subseteq \bar{L}_1 + R_0 \subseteq \mathcal{E}(L).$$

Therefore, $\mathcal{E}(L) = \bar{L}_1 + R_0$.

(iii). Since L is perfect, it suffices to show that $[\bar{L}_1, \bar{L}_1] \subseteq L$ and $[\bar{L}_1, R_0] \subseteq L$. We first show that the latter inclusion follows from the former one. So assume that $[\bar{L}_1, \bar{L}_1] \subseteq L$. We are going to show that $[\bar{L}_1, R_0] \subseteq L$, i.e. that $[\bar{M}, R_0] \subseteq L$ for each nontrivial irreducible submodule M of L. Let (ζ_1, ξ_1) be the type of M. If $\zeta_1 \neq \xi_1$, then $\bar{M} = M$ and $[M, R_0] \subseteq L$, as required. Suppose that $\zeta_1 = \xi_1 \neq 0$. Note that each element $x \in \mathcal{E}_0$ is represented in the form $x = X \otimes \lambda$ where $X \in \mathfrak{F}$ and $\lambda \in \Lambda(0,0)$. Hence $x \bar{M} = \bar{M} x = 0$, so $[M, \mathcal{E}_0] = 0$. Therefore, we have

$$[M, R_0] \subseteq [\bar{M}, \bar{L}_1 + \mathcal{E}_0] \subseteq [\bar{L}_1, \bar{L}_1] \subseteq L.$$

It remains to prove that $[\bar{L}_1, \bar{L}_1] \subseteq L$, i.e. $[\bar{M}, \bar{N}] \subseteq L$ for all nontrivial irreducible M and N. Let (ζ_1, ξ_1) and (ζ_2, ξ_2) be the types of M and N, respectively. If $\zeta_1 \neq \xi_1$ and $\zeta_2 \neq \xi_2$, then $\bar{M} = M$ and $\bar{N} = N$, and we are done. Next, suppose that $\zeta_1 = \xi_1 = \zeta \neq 0$. If $\zeta_2 \neq \zeta$ (resp. $\xi_2 \neq \zeta$), then by Lemma 5.3,

$$[\bar{M}, \bar{N}] \subseteq \bar{M} \bar{N} + \bar{N} \bar{M} \subseteq \bar{Q}_1 + \cdots + \bar{Q}_d$$

where Q_i are nontrivial irreducible submodules of type (ζ_2, ξ) (resp. (ζ, ξ_2)). Since $\bar{Q}_i = Q_i \subseteq L$, we have $[M, N] \subseteq L$. Hence we assume that $\zeta_1 = \xi_1 = \zeta_2 = \xi_2 = \zeta$. We have
\[M = W_\zeta \otimes \Lambda_M = M \oplus F M \] and \[\tilde{N} = W_\zeta \otimes \Lambda_N = N \oplus F N \] where \(I_M = I \otimes \Lambda_M \) and \(I_N = I \otimes \Lambda_N \) with \(I \) being the identity matrix. So

\[[M, \tilde{N}] = [M, N] + [M, I_N] + [N, I_M] + F[I_M, I_N]. \]

Clearly, \([M, N] \subseteq L\). We now show that \(M' = [M, I_N] \subseteq L\). Assume that \(M' \neq 0\). Since \(S \) acts trivially on \(I_N \), the \(S \)-module \(M' \) is a homomorphic image of \(M \) (the homomorphism is given by the map \(x \mapsto [x, I_N] \) for \(x \in M \)). As \(M \) is irreducible and \(M' \neq 0 \), we have \(M \cong M' \). By Lemma 5.3, \(M' \) is a submodule of \(M \tilde{N} + N M \subseteq L_1 \). Since \(M' \) is nontrivial and irreducible, \(M' \subseteq L \), as required. Similarly, \([N, I_M] \subseteq L\).

It remains to check that \([I_M, I_N] \subseteq L\). We have

\[[I_M, I_N] = I \otimes \Lambda_M \Lambda_N - I \otimes \Lambda_N \Lambda_M. \]

Recall that \(n_\zeta = \dim W_\zeta > 2 \). Fix any nonzero elements \(\alpha_1, \ldots, \alpha_{n_\zeta} \in F \) such that \(\sum \alpha_i = 0 \) and \(\sum \alpha_i^{-1} = 0 \) (as \(F \) is algebraically closed, one can take all \(n_\zeta \)th roots of unity). Set \(X_1 = \text{diag}(\alpha_1, \ldots, \alpha_{n_\zeta}) \) and \(X_2 = \text{diag}(\alpha_1^{-1}, \ldots, \alpha_{n_\zeta}^{-1}) \). Then \(X_1X_2 = X_2X_1 = I \). Since \(X_1 \) and \(X_2 \) have zero traces, the elements \(x_1 = X_1 \otimes \Lambda_M \) and \(x_2 = X_2 \otimes \Lambda_N \) lie in \(M \) and \(N \), respectively. It remains to observe that \([I_M, I_N] = [x_1, x_2] \subseteq L\) \(\square \)

The following obvious lemma (cf. Proposition 3.7) is useful for describing the null-radical of \(\mathcal{E}(L) \).

Lemma 5.7

1. The null-radical of \(\mathcal{E}(L) \) is contained in \(\mathcal{E}_0 \);
2. \(\dim \mathcal{E}_0 \leq \sum_{\zeta \in \zeta^F} d_1 d_0 \) where \(d_\zeta \) is the composition length of the sum of all irreducible \(L \)-submodules of \(L \) of type \((\zeta, \xi)\).

6 Main results

Let \(A \) be an associative algebra, \(L \) a Lie algebra, and let

\[\iota : L \to [A] \]

be a Lie algebra monomorphism. A pair \((\iota, A)\) is called an enveloping algebra for \(L \) if \(\iota(L) \) generates \(A \) as an algebra. In view of the universal property, the map \(\iota \) uniquely extends to an associative algebra homomorphism

\[\bar{\iota} : \mathcal{A}(L) \to A \]

where \(\mathcal{A}(L) \) is the augmentation ideal of the universal enveloping algebra \(\mathcal{U}(L) \), i.e. the ideal of codimension 1 generated by \(L \). Note that we do not require \(A \) to have the identity, so it is more convenient for us to deal with \(\mathcal{A}(L) \) instead of \(\mathcal{U}(L) \). Two enveloping algebras \((\iota_1, A_1)\) and \((\iota_2, A_2)\) are isomorphic if there is an algebra isomorphism \(\delta : A_1 \to A_2 \) such that \(\delta \iota_1 = \iota_2 \).

Observe that each enveloping algebra \((\iota, A)\) is uniquely determined (up to isomorphism) by the corresponding kernel \(H_A = \text{Ker}(\iota) \) in \(\mathcal{A}(L) \). In particular, there exists a 1–1 correspondence between the enveloping algebras for \(L \) and the ideals \(H \) in \(\mathcal{A}(L) \) such that \(H \cap L = 0 \). This gives a partial ordering on the set of enveloping algebras of \(L \): we say that \((\iota_1, A_1) \leq (\iota_2, A_2)\) if and only if \(H_{A_2} \subseteq H_{A_1} \). Given an enveloping algebra \((\iota, A)\) for a Lie algebra \(L \), we often identify \(L \) with its image \(\iota(L) \) in \(A \), and call \(A \) the enveloping algebra, keeping in mind that there is a relevant monomorphism \(\iota \).

13
Let A be a finite dimensional associative algebra. We say that A is perfect if $A^2 = A$, and strongly perfect if A has no proper ideals of codimension ≤ 4. Set $\tilde{A} = A$ if $1_A \in A$ and $\tilde{A} = A \oplus F1_{\bar{A}}$ (the algebra that is obtained from A by external adjoining the identity) otherwise. Assume that A is an enveloping algebra of a perfect Lie algebra L. One can easily see that A is perfect. Clearly, \tilde{A} is a quotient of $\mathcal{U}(L)$. The algebra \tilde{A} can be viewed as an L-module $L\tilde{A}$ (under the regular action). Note that the enveloping algebra of the image of L in the algebra of transformations of the space \bar{A} is isomorphic to A.

Let L be a perfect Lie algebra and V be an L-module. We denote by $\text{Irr} L$ the set of nontrivial irreducible L-modules (up to equivalence), and by $\text{Irr}(V)$ the set of inequivalent nontrivial composition factors of V. We say that L is strongly plain if L is plain and $sl_\mathbb{Q}$-free. For each plain Lie algebra L we fix a faithful plain module $V(L)$ and set $\mathfrak{S}(L) = \text{Irr}(V(L))$. Although $\mathfrak{S}(L)$ depends on V, the choice of V is nonessential. By the type of an enveloping algebra A we mean the set $\text{Irr}(L, \tilde{A})$. Recall that an enveloping algebra A of L is called \mathfrak{P}-enveloping if $[A, A] = L$. We denote by $\mathfrak{P}(L)$ the poset of \mathfrak{P}-enveloping algebras of a Lie algebra L.

We shall use some results of [1], however, the definitions of $\text{Irr} L$ and $\text{Irr}(V)$ slightly differ from those in [1], since we ignore trivial modules. (This is because we prefer to deal with $\mathcal{A}(L)$ instead of $\mathcal{U}(L)$.) In the theorem below we reformulate results from [1] to the case of ideals in $\mathcal{A}(L)$.

Theorem 6.1 ([1, 3.4]) Let L be a perfect finite dimensional Lie algebra, Φ a finite subset of $\text{Irr} L$, $\mathfrak{S}(\Phi)$ the set of all ideals X of $\mathcal{A}(L)$ such that $\mathcal{A}(L)/X$ is finite dimensional and $\text{Irr}(\mathcal{A}(L)/X) = \Phi$. Then $\mathfrak{S}(\Phi)$ is nonempty and has a smallest element $N(\Phi)$ and a largest element $M(\Phi)$ such that $N(\Phi) \subseteq X \subseteq M(\Phi)$ for all $X \in \mathfrak{S}(\Phi)$. The algebra $\mathcal{A}(L)/M(\Phi)$ is semisimple, the algebra $M(\Phi)/N(\Phi)$ is nilpotent.

Corollary 6.2 Let L be a perfect Lie algebra, Φ be a finite subset of $\text{Irr} L$, and let $\mathfrak{P}_\Phi(L)$ be the poset of enveloping algebras for L of type Φ. Assume that $\mathfrak{P}_\Phi(L) \neq \emptyset$. Then $\mathfrak{P}_\Phi(L)$ has the largest (universal) element.

Theorem 6.3 Let A be a strongly perfect associative algebra. Then

1. $L = [A, A]$ is a strongly plain Lie algebra, $L\tilde{A}$ is a plain L-module, and L generates A.
2. If $A = A_1 \oplus \cdots \oplus A_n$ is the complete weak decomposition of A and $L_i = [A_i, A_i]$, then $L = L_1 \oplus \cdots \oplus L_n$ is the complete weak decomposition of L.

Proof. (1) Recall that $\tilde{A} = A$ if $1_A \in A$ and $\tilde{A} = A \oplus F1_{\bar{A}}$ otherwise. We consider \tilde{A} as an algebra of endomorphisms of the vector space \bar{A} induced by the left multiplications, so \tilde{A} is represented as a subalgebra of $M_n(F)$ with the same identity. Let D be a Levi subalgebra of \tilde{A}. Let $\{D_\zeta \mid \zeta \in \Omega\}$ be the set of simple components of D. Since A is strongly perfect, D contains at most one component D_0 of dimension 1. Clearly, $D' = \bigoplus_{\zeta \neq 0} D_\zeta$ is a Levi subalgebra of A. Since $D_\zeta \cong M_{n_\zeta}(F)$, we have $[D_\zeta, D_\zeta] \cong sl_{n_\zeta}(F)$ and

$$S = [D, D] = \bigoplus_{\zeta \in \Omega} [D_\zeta, D_\zeta]$$

Let $N = \text{Rad} A$ be the radical of A. As N is nilpotent, $[N]$ is a nilpotent ideal of $[A]$. Clearly, $[A]/[N] \cong [D']$. As S is a semisimple Lie algebra, the radical R of L coincides with $L \cap N$ and $L/R \cong S$. Therefore, S is a plain Levi subalgebra of L' and $\tilde{S}A$ is a plain S-module. Moreover,
since A is strongly perfect, D' has no component of dimension 4, so S is strongly plain. Using Proposition 2.5, we get the decomposition
\[A = \bigoplus_{\zeta, \xi \in \Omega} W_{\zeta \xi} \otimes \Lambda_A(\zeta, \xi) \]
Let L' be a Lie subalgebra of A generated by all $W_{\zeta \xi} \otimes \Lambda_A(\zeta, \xi)$. Note that L' is perfect and S is a Levi subalgebra of L', so L' is plain and $L' \Lambda$ is a plain L'-module. It remains to show that $L' = L$ and L generates A. Let A' be the enveloping algebra of L' in $M_n(\mathbb{F})$. Clearly, A' is generated by all $W_{\zeta \xi} \otimes \Lambda_A(\zeta, \xi)$ with $(\zeta, \xi) \neq (0, 0)$. Therefore A' is an ideal of A. Since A' contains the Levi subalgebra D', A/A' is nilpotent. As A is perfect, $A' = A$. Therefore by Proposition 5.6(iii), $L = [A, A] = L'$ and L generates A, as required.

(2) By (1), each L_i is perfect. Obviously, the decomposition $L = L_1 \uplus \cdots \uplus L_n$ is weak. Let $L = M_1 \uplus \cdots \uplus M_k (k \geq n)$ be the complete weak decomposition of L. We have to prove that $k = n$. Since each M_i is an L-submodule of L, there is a partition $\Omega' = \Omega_1 \sqcup \cdots \sqcup \Omega_k$ such that M_i is generated by all $W_{\zeta \xi} \otimes \Lambda_A(\zeta, \xi)$ with $\zeta, \xi \in \Omega_i \cup \{0\}$. Since $[M_i, M_j] = 0$ for all $i \neq j$, we have $\zeta \neq \xi$ (see Proposition 3.8) for each pair $(\zeta, \xi) \in \Omega_i \times \Omega_j$. This implies that the complete weak decomposition of A has at least k components. Therefore $k = n$. \[\square \]

Corollary 6.4 Let A be a finite dimensional associative algebra having no proper ideals of codimension ≤ 4. Then $[A, A] = [[A, A], [A, A]]$.

Theorem 6.5 Let L be a perfect finite dimensional \mathfrak{sl}_2-free Lie algebra.

1. Assume that $\mathfrak{P}(L) \neq \emptyset$. Then for each $A \in \mathfrak{P}(L)$, $L \Lambda$ is a faithful plain L-module. In particular, L is plain.

2. Assume that L is plain. Then for each faithful plain L-module V the enveloping algebra of L in $\text{End} V$ is \mathfrak{P}-enveloping. In particular, $\mathfrak{P}(L) \neq \emptyset$.

Proof. (1) It suffices to observe that each $A \in \mathfrak{P}(L)$ is strongly perfect, so by Theorem 6.3(1), $L = [A, A]$ is plain and $L \Lambda$ is a plain L-module. (In fact this can be easily proved directly because we know that $L = [A, A]$ is perfect, see the proof of Theorem 6.3(1)).

(2) This is proved in Proposition 5.6(iii) \[\square \]

Proof of Theorem 1.4. It suffices to observe that L is quasispecial if and only if $\mathfrak{P}(L) \neq \emptyset$. \[\square \]

Proof of Theorem 1.5. This is proved in Theorem 6.5(2). \[\square \]

Proposition 6.6 Let L be a strongly plain Lie algebra and $A \in \mathfrak{P}(L)$. Let $L = L_1 \uplus \cdots \uplus L_n$ be the complete weak decomposition and let A_i be the subalgebra of A generated by L_i. Then $A_i \in \mathfrak{P}(L_i)$ and $A = A_1 \uplus \cdots \uplus A_n$ is the complete weak decomposition of A.

Proof. Since $A \in \mathfrak{P}(L)$, we can identify L with the Lie algebra $[A, A]$. Let $A = B_1 \uplus \cdots \uplus B_n$ be the complete weak decomposition of A. Since L is strongly plain, A and all B_i are strongly perfect. Therefore, by Theorem 6.3(2), $L = [B_1, B_1] \uplus \cdots \uplus [B_n, B_n]$ is the complete weak decomposition of L. In view of uniqueness, one can assume that $[B_i, B_i] = L_i$ for all i. It remains to note that L_i generates B_i, i.e. $B_i = A_i$. \[\square \]

Lemma 6.7 Let L be a strongly plain Lie algebra, let V be a faithful plain L-module, and $\text{Irr}(V) = \{ W_{\zeta} \mid \zeta \in \Omega' \}$. Then L is weakly indecomposable if and only if for each nontrivial partition $\Omega' = \Omega_1 \sqcup \Omega_2$ there exist $\zeta_1 \in \Omega_1$ and $\zeta_2 \in \Omega_2$ such that the adjoint L-module has a composition factor isomorphic to $W_{\zeta} \otimes W_{\zeta}^*$ or $W_{\zeta} \otimes W_{\zeta}^*$. 15
Proof. Let A be the enveloping algebra of L in $\text{End} V$. By Proposition 6.6 and Theorem 6.3(2), L is weakly indecomposable if and only if A is. We identify L with $[A, A]$. Clearly, $L \supset W_{\xi \xi} \otimes \Lambda_A(\xi, \xi)$ for all $\xi \neq \xi$. It remains to apply Proposition 3.8.

Recall that $\mathcal{S}(L)$ is the set $\text{Irr}(\mathcal{V}(L))$ where $\mathcal{V}(L)$ is a fixed faithful plain L-module. For a subset Φ of $\text{Irr} L$ we denote by Φ^* the set $\{\varphi^* | \varphi \in \Phi\}$ of dual modules.

Lemma 6.8 Let L be a weakly indecomposable plain Lie algebra and let V be a faithful plain L-module. Then $\text{Irr}(V) = \mathcal{S}(L)$ or $\mathcal{S}(L)^*$.

Proof. Indeed, assume that $\text{Irr}(V) \neq \mathcal{S}(L)$ or $\mathcal{S}(L)^*$. Set $\Phi_1 = \text{Irr}(V) \cap \mathcal{S}(L)$ and $\Phi_2 = \text{Irr}(V) \setminus \Phi_1$. Since V and $\mathcal{V}(L)$ are plain and faithful, $\mathcal{S}(L) = \Phi_1 \cup \Phi_2^*$. By Lemma 6.7, there exists $\varphi_1 \in \Phi_1$ and $\varphi_2 \in \Phi_2$ such that the adjoint L-module contains a composition factor isomorphic to $\varphi_1 \otimes \varphi_2^*$ or $\varphi_2 \otimes \varphi_1^*$. It remains to observe that the adjoint L-module is a submodule of $\mathcal{V}(L) \otimes \mathcal{V}(L)^*$ and the latter L-module contains none of these composition factors. The contradiction obtained proves the lemma.

Proposition 6.9 Let L be a perfect Lie algebra. Let H be an ideal of a \mathfrak{P}-enveloping algebra A of L. Assume that $H \cap L \subseteq Z(L)$. Then $HA = AH = 0$, i.e. $H \subseteq \text{Null}(A)$.

Proof. Since $[A, A] = L$, we have $[L, H] \subseteq L \cap H \subseteq Z(L)$. As $[L, L] = L$, we have

$$[L, H] = [[L, L], H] \subseteq [L, [L, H]] \subseteq [L, Z(L)] = 0,$$

i.e. L commutes with H. Therefore,

It remains to note that L generates A.

Let L be a strongly plain finite dimensional Lie algebra and let $L = L_1 \uplus \cdots \uplus L_n$ be the complete weak decomposition of L. Clearly, each L_i is strongly plain and the restriction of $\mathcal{V}(L)$ to L_i is plain. Without loss of generality one may assume that

$$\mathcal{S}(L) = \mathcal{S}(L_1) \sqcup \cdots \sqcup \mathcal{S}(L_n)$$

(viewing irreducible L_i-modules as L-modules). Let $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)$ where $\varepsilon_1, \ldots, \varepsilon_n \in \{\pm 1\}$. For $i = 1, \ldots, n$ set $\mathcal{S}(L_i)^{\varepsilon_i} = \mathcal{S}(L_i)$ if $\varepsilon_i = 1$ and $\mathcal{S}(L_i)^{\varepsilon_i} = \mathcal{S}(L_i)^*$ if $\varepsilon_i = -1$. Put

$$\mathcal{S}(L)^\varepsilon = \mathcal{S}(L_1)^{\varepsilon_1} \sqcup \cdots \sqcup \mathcal{S}(L_n)^{\varepsilon_n}$$

$$\mathfrak{P}_\varepsilon(L) = \{A \in \mathfrak{P}(L) | \text{Irr}(L A) = \mathcal{S}(L)^\varepsilon\}.$$

Note that $\mathfrak{P}_\varepsilon(L)$ may be empty for some ε. If L is weakly indecomposable, we shall write $\mathfrak{P}_\pm(L)$ instead of $\mathfrak{P}_{(\pm 1)}(L)$. The following theorem describes the poset of \mathfrak{P}-enveloping algebras for strongly plain Lie algebras.

Theorem 6.10 Let L be a strongly plain finite dimensional Lie algebra and let $L = L_1 \uplus \cdots \uplus L_n$ be the complete weak decomposition of L. Then the following holds.

1. Each \mathfrak{P}-enveloping algebra of L is strongly perfect.

2. Let $A \in \mathfrak{P}(L)$ and let A_i be the subalgebra of A generated by L_i. Then $A_i \in \mathfrak{P}(L_i)$ and $A = A_1 \uplus \cdots \uplus A_n$ is the complete weak decomposition of A.

16
(3) For each faithful plain L-module V one has $\text{Irr}(V) = S(L)^e$ for some e.

(4) $\mathfrak{P}(L) = \bigcup_{\varepsilon = (\pm 1, \ldots, \pm 1)} \mathfrak{P}_\varepsilon(L)$.

(5) The map $\nu : (\iota, A) \mapsto (-\iota, A^{op})$ is an isomorphism between the posets $\mathfrak{P}_\varepsilon(L)$ and $\mathfrak{P}_{-\varepsilon}(L)$.

(6) If $\mathfrak{P}_\varepsilon(L) \neq \emptyset$, then the class $\mathfrak{P}_\varepsilon(L)$ contains a universal object $N_\varepsilon(L)$. More exactly, there is an algebra $N_\varepsilon(L) \in \mathfrak{P}_\varepsilon(L)$ such that for each $A \in \mathfrak{P}_\varepsilon(L)$ one has $A \leq N_\varepsilon(L)$, the kernel H_A of the corresponding homomorphism $N_\varepsilon(L) \to A$ is a subspace of $\text{Null}(N_\varepsilon(L))$, and $H_A \cap L = 0$. In particular, the poset $\mathfrak{P}_\varepsilon(L)$ is antiisomorphic to the poset of all subspaces $H \subseteq \text{Null}(N_\varepsilon(L))$ with $H \cap L = 0$.

(7) Set $\mathcal{N}_i = N_i(L_i)$. Then for each ε and each $A \in \mathfrak{P}_\varepsilon(L)$ there exists an ideal \hat{H}_A of the algebra $N_\varepsilon = N_1^{(1)} \oplus \cdots \oplus N_n^{(e_n)}$ such that $\hat{H}_A \subseteq \text{Null}(N_\varepsilon)$ and $A \cong N_\varepsilon/\hat{H}_A$. In particular,

$$A/\text{Null}(A) \cong N_\varepsilon/\text{Null}(N_\varepsilon) \cong (N_1/\text{Null}(N_1))^{e_1} \oplus \cdots \oplus (N_n/\text{Null}(N_n))^{e_n}.$$

Proof. (1) This is obvious.

(2) This is proved in Proposition 6.6.

(3) Since for each i the restriction V_iL_i is plain, this follows from Lemma 6.8.

(4) This follows from Theorem 6.5(1) and Theorem 6.10(3).

(5) Let $(\iota, A) \in \mathfrak{P}_\varepsilon(L)$. Recall that (ι, A) is the enveloping algebra of L in End \bar{A}. Therefore $(-\iota, A^{op})$ is the enveloping algebra of L in End \bar{A}^\ast. Hence

$$\text{Irr}(V_A^{op}) = \text{Irr}(L\bar{A}^\ast) = \text{Irr}(L\bar{A})^\ast = (S(L)^e)^* = S(L)^{-e},$$

so $(-\iota, A^{op}) \in \mathfrak{P}_{-\varepsilon}(L)$. Clearly, ν is a poset homomorphism. Since $\nu^2 = 1$, the map ν is an isomorphism.

(6) It follows from Theorem 6.5(2) that the set $\mathfrak{P}_\varepsilon(L)$ coincides with the set $\mathfrak{E}_\Phi(L)$ for $\Phi = S(L)^e$ (see Corollary 6.2). Therefore the existence of the universal \mathfrak{P}-enveloping algebra $N_\varepsilon(L)$ follows from Corollary 6.2. Let $A \in \mathfrak{P}_\varepsilon(L)$ and H_A be the kernel of the corresponding homomorphism $N_\varepsilon(L) \to A$. Then $H_A \cap L = 0$. Therefore by Proposition 6.9, $H_A \subseteq \text{Null}(N_\varepsilon(L))$.

(7) Let A_i be the subalgebra of A generated by L_i. By Theorem 6.10(2), $A_i \in \mathfrak{P}(L_i)$ and $A = A_1 \oplus \cdots \oplus A_n$ is the complete weak decomposition of A. By Theorem 6.10(5) and (6), $A_i \cong N_i^{(e_i)}/H_i$ where $H_i \subseteq \text{Null}(N_i^{(e_i)})$. Therefore $A = A_1 \oplus \cdots \oplus A_n \cong N_\varepsilon/H'$ where $H' = H_1 \oplus \cdots \oplus H_n \subseteq \text{Null}(N_\varepsilon)$. It remains to observe that the kernel of the natural homomorphism $\bar{A} \to A$ lies in $\text{Null}(\bar{A})$ and to apply Proposition 3.1.

Proof of Theorem 1.7. By Theorem 6.3(1), L is strongly plain. Since A_1 and A_2 are \mathfrak{P}-enveloping algebras for L, the result follows from Theorem 6.10.

Remark 6.11 Assume that L is weakly indecomposable.

(1) It follows from Theorem 6.10(2) and (5) that the algebras $N_+(L)$ and $N_-(L)$ are weakly indecomposable and antiisomorphic.

(2) The example below shows that the set $\mathfrak{P}_\varepsilon(L)$ may have more than one element. This implies that there are non-universal \mathfrak{P}-enveloping algebras.

(3) The poset $\mathfrak{P}_\varepsilon(L)$ may not contain the smallest element.

Below is an example of a perfect weakly indecomposable Lie algebra L such that $\mathfrak{P}_+(L)$ has more than one element.
Example 6.12 Let $n \geq 3$ and L_n be a Lie algebra of $(2n + 1) \times (2n + 1)$ matrices of the form

$$x = \begin{pmatrix} x_0 & x_1 & x_3 \\ x_0 & x_2 \\ x_0 & x_2 \\ x_0 & x_2 & x_3 \end{pmatrix}$$

(7)

where x_0 runs over all $n \times n$ matrices with zero traces; and x_1, x_2, x_3 run over all matrices of sizes $n \times 1$, $1 \times n$, $n \times n$, respectively (all empty spaces are zero matrices). We are going to describe all \mathfrak{P}-enveloping algebras for L_n. Let us denote by V_1 the natural module for $M_{2n+1}(\mathbb{F})$ and by $\varphi_1 : L_n \to \text{End} V_1$ the representation defined by (7). For L_n we construct another faithful matrix representation φ_2 as follows.

$$\varphi_2(x) = \begin{pmatrix} 0 & x_2 & x_4 \\ x_0 & x_1 \\ 0 & x_1 & x_3 \\ x_0 & x_2 & x_3 \end{pmatrix}$$

(8)

where $x_4 = -\text{tr} x_3$. Let V_2 be the $(3n + 3)$-dimensional L_n-module corresponding to φ_2. Let A_1 and A_2 be the enveloping algebras of L in $\text{End} L_1$ and $\text{End} L_2$, respectively. Clearly, A_1 and A_2 consist of all matrices of the forms (7) and (8), respectively, where the x_i run over all matrices of the corresponding sizes (x_4 does not depend on x_3). Let R be the subspace of A_2 consisting of matrices (8) with $x_0 = x_1 = x_2 = x_3 = 0$. Then R is an ideal of A_2 of dimension 1 and $A_2/R \cong A_1$. Obviously, $A_1, A_2 \in \mathfrak{P}_+(L_n)$. Let $\mathcal{N}_+(L_n)$ be a universal \mathfrak{P}-enveloping. By Lemma 5.7(2), the dimension of \mathcal{E}_0 for $\mathcal{N}_+(L_n)$ does not exceed 1. Therefore by Lemma 5.7(1), $\mathcal{N}_+(L_n)$ has at most one nonzero ideal H lying in Null($\mathcal{N}_+(L_n)$). It follows that $\mathcal{N}_+(L_n) = A_2$ and $H = R$, so $\mathfrak{P}_+(L_n) = \{A_1, A_2\}$. By Theorem 6.10(5), $\mathfrak{P}_-(L_n) = \{A_1^{op}, A_2^{op}\}$.

Proof of Theorem 1.2. Set

$$\mathcal{I}(L) = \{\text{Irr}(V) \mid V \text{ is a plain } L\text{-module} \}.$$

Let S_1, \ldots, S_k be the simple components of $L/\text{Rad} L$. Clearly, for each non-trivial composition factor W of a plain L-module V there exists i such that $S_i = L/\text{Ann}_L(W) \cong \mathfrak{s}(W)$ and $S_jW = 0$ for $j \neq i$. This implies that $|\mathcal{I}(L)| \leq 3^k$. Let $\mathfrak{M}(L)$ be the set of maximal (with respect to \subseteq) elements of $\mathcal{I}(L)$. Let $\Phi_1, \Phi_2 \in \mathfrak{M}(L)$ and let V_1, V_2 be plain L-modules such that $\Phi_1 = \text{Irr}(V_1)$. Set $\Phi_1^* = \text{Irr}(V_1^*)$. Assume that $\Phi_1 \neq \Phi_2$. Then

$$\Phi_1 \cap \Phi_2^* \neq \emptyset.$$

(9)

Indeed, otherwise $V_1 \oplus V_2$ is a plain L-module and $\Phi_1 \cup \Phi_2 = \text{Irr}(V_1 \oplus V_2) \in \mathcal{I}(L)$, so Φ_1 and Φ_2 are not maximal. Equation (9) implies that $|\mathfrak{M}(L)| \leq 2^k$.

Fix any $\Phi \in \mathfrak{M}(L)$. Since $\text{Ann}_L(V_1 \oplus V_2) = \text{Ann}_L(V_1) \cap \text{Ann}_L(V_2)$, there exists a plain L-module V_Φ with $\text{Irr}(V_\Phi) = \Phi$ such that $\text{Ann}_L(V_\Phi)$ annihilates each plain L-module V with $\text{Irr}(V) = \Phi$. Set $L_\Phi = L/\text{Ann}_L(V_\Phi)$. Let $A_\Phi = N_\Phi(L_\Phi)$ be the universal \mathfrak{P}-enveloping algebra of L_Φ corresponding to Φ (see Theorem 6.10(6)). We assert that the associative algebras A_Φ, $\Phi \in \mathfrak{M}(L)$, with the representations $\eta_\Phi : L \to L_\Phi \to A_\Phi$ satisfy the theorem. Indeed, the restrictions of all finite dimensional A_Φ-modules to L_Φ are plain. Let now V be a plain L-module. Take arbitrary $\Phi \in \mathfrak{M}(L)$ such that $\text{Irr}(V) \subseteq \Phi$. Consider the L-module
V' = V ⊕ V_\Phi. Since Irr(V') = Φ, Ann_L(V_Φ) annihilates V', so V' is a plain L_Φ-module. Moreover, by Theorem 6.10, the enveloping algebra of L_Φ in End V' is a homomorphic image of A_Φ. Since V' contains V, the enveloping algebra ist A_Φ. It remains to note that V is an A_Φ-submodule of V'.

Let A be an associative algebra. Set \(\bar{A} = A \) if \(1_A \in A \) and \(\bar{A} = A \oplus \Phi 1_A \) (the algebra that is obtained from A by external adjointing the identity) otherwise. If \(1_A \in A \), we denote by U(A) the group of invertible elements of A. Observe that the external adjointing the identity to A does not change the commutator subgroup of U(A), i.e. \(U(A)' = U(\bar{A})' \). This allows us to define \(U(A)' \) even if A has no the identity. We say that A is reduced if A has no a proper ideal C such that \(A = \bar{C} \). Obviously, for each finite dimensional algebra A there exists a reduced algebra \(A_0 \) (not necessary containing the identity) such that \(U(A)' = U(A_0)' \).

Let G be a perfect group, A be a reduced algebra, and

\[\iota : G \rightarrow U(A)' \]

be a monomorphism. The pair \((\iota, A) \) is called an enveloping algebra for G if \(\iota(G) \) generates \(\bar{A} \) as an algebra. In view of the universal property, the map \(\iota \) uniquely extends to an associative algebra homomorphism

\[\bar{\iota} : \mathbb{F}G \rightarrow \bar{A}. \]

Let \(\varphi : G \rightarrow \text{End} V \) be a faithful representation of a perfect group G and let B be a subalgebra of \(\text{End} V \) generated by \(\varphi(G) \). Then one can easily check that there exists a unique reduced subalgebra A of B such \(B = A + \mathbb{F}I \) where I is the identity transformation of V. This subalgebra A is called the enveloping algebra of G in \(\text{End} V \). Conversely, let A be an enveloping algebra for a perfect group G. The algebra \(\bar{A} \) can be viewed as an G-module \(G\bar{A} \) (under the regular action). One can check that the enveloping algebra of the image of G in \(\text{End} \bar{A} \) is isomorphic to A.

An enveloping algebra A of a perfect group G is called \(\mathfrak{P} \)-enveloping if

\[G = U(A)'. \]

We denote by \(\mathfrak{P}(G) \) the set of \(\mathfrak{P} \)-enveloping algebras for a group G. Let V be a vector space over \(\mathbb{F} \) and let G be a perfect algebraic subgroup of GL(V). Let \(\{W_1, \ldots, W_k\} \) be the set of nontrivial composition factors of the G-module V and let \(\varphi_i : G \rightarrow GL(W_i) \) be the corresponding representations of G. The G-module V is called plain if

\[G/\text{Ker} \varphi_i \cong SL(W_i) \quad (1 \leq i \leq k) \]

and \(W_i \not\cong W_j \) if \(i \neq j \) and \(\dim W_i > 2 \). Note that \(\dim W_i \geq 2 \) for each i since G is perfect. A perfect group G is called plain if it has faithful plain module V. If, in addition, \(\dim W_i > 2 \) for all i, then G is strongly plain (or SL_2-free plain).

Theorem 1.6 is an immediate consequence of the following analog of Theorem 6.5.

Theorem 6.13 Let G be a perfect SL_2-free algebraic group.

1. Assume that \(\mathfrak{P}(G) \neq \emptyset \). If \(A \in \mathfrak{P}(G) \), then \(G\bar{A} \) is a faithful plain G-module. In particular, G is plain.

2. Assume that G is plain. Then for each faithful plain G-module V the enveloping algebra of G in \(\text{End} V \) is \(\mathfrak{P} \)-enveloping. In particular, \(\mathfrak{P}(G) \neq \emptyset \).
Proof. (1) We view \bar{A} as an algebra of endomorphisms of the vector space \bar{A}, so \bar{A} is represented as a subalgebra of $M_n(\mathbb{F})$ with the same identity (here $n = \text{dim} \bar{A}$). Let D be a Levi subalgebra of \bar{A}. Let $\{D_\zeta \mid \zeta \in \Omega \}$ be the set of simple components of D. Since $D_\zeta \cong M_{n_\zeta}(\mathbb{F})$, we have $U(D_\zeta) \cong GL_{n_\zeta}(\mathbb{F})$ and $U(D_\zeta)' \cong SL_{n_\zeta}(\mathbb{F})$. Clearly, $U(D)'$ is the direct product of the groups $U(D_\zeta)'$. Let $N = \text{Rad} \bar{A}$ be the radical of \bar{A}. As N is nilpotent, $U(N)$ is a unipotent normal subgroup of $U(\bar{A})$. Clearly, $U(\bar{A}) = U(D)U(N)$. Therefore $G = U(A)' = U(\bar{A})' = U(D)'R$ where R is the unipotent radical of $U(A)'$. It remains to observe that $U(D)'$ is a plain subgroup of $GL(V)$ and \bar{A} is a plain $U(D)'$-module.

(2) Let $\varphi : G \to GL(V)$ be a faithful plain representation of G and let W_1, \ldots, W_n list the nontrivial composition factors of V. Let $\varphi_i : G \to GL(W_i)$ denote the restriction of φ to W_i and let $\tau_i : SL(W_i) \to PSL(W_i)$ be the natural projection. Then $G_i = G/Ker \varphi_i$ is isomorphic to $SL(W_i)$, and $H_i = G_i/Ker \tau_i \circ \varphi_i$ is isomorphic to $PSL(W_i)$. Set $H = \cap_{i=1}^n Ker \varphi_i$ and $M = \cap_{i=1}^n Ker \tau \circ \varphi_i$. Then H acts trivially on each composition factor of V so H is unipotent, hence H is nilpotent. As $Ker \tau$ is abelian, M/N is abelian so M is solvable. As G/M is a finite subdirect product of simple groups, it is in fact a direct product. Clearly, G/M have no non-trivial finite quotient. Therefore, if X is a finite index subgroup of G then $G = XM$. If $X \neq G$, then G/X is not solvable as G is perfect. Besides, $G/X \cong MX/X \cong M/(M \cap X)$. This is a contradiction as M is solvable. This means that G contains no proper subgroup of finite index. Therefore, G is connected.

Let A be the enveloping algebra of G in $\text{End} V$ and let L be the Lie algebra of G. We identify L with the corresponding subalgebra of $\mathfrak{gl}(V)$. Since G is perfect, L is perfect as well. Observe that L is strongly plain and V is a plain L-module. By Theorem 6.5(2), $L = [B, B]$ where B is the enveloping algebra of L in $\text{End} V$. Since G is connected, by [4, Corollary 2 of Theorem II.12.8], $\mathbb{F}I + B = \mathbb{F}I + A$ where I is the identity of $\text{End} V$. Hence $L = [A, A]$. Set $H = U(A + \mathbb{F}I)$. One can easily show that H is a connected algebraic group (see, for instance, [2, Example I.1.6(9)]) and the Lie algebra of H is $[A + \mathbb{F}I]$. By [2, I.2.3], the commutator subgroup H' is a connected algebraic subgroup of H, and by [2, II.7.8], $L = [A, A]$ is the Lie algebra of H'. Since $H' \cong G$ are connected and have the same Lie algebras, by [2, II.7.1], $G = H' = U(A)'$, as required. \qed

One can easily describe the properties of Ψ-enveloping algebras for G in the spirit of Theorem 6.10. Observe that in Theorem 1.7 only reduced associative algebras are considered. We have the following analog of Theorem 1.7 for algebraic groups.

Theorem 6.14 Let A_1 and A_2 be finite dimensional associative algebras. Assume that $U(A_1)' \cong U(A_2)'$ and each A_1, A_2 has no nontrivial homomorphism into $M_2(\mathbb{F})$. Then $A_1 \sim A_2$. Moreover, if A_1 or A_2 is weakly indecomposable, then there is an algebra A and ideals $H_1, H_2 \subseteq \text{Null}(A)$ such that for $i = 1, 2$ we have $U(A)' \cong U(A_i)'$ and $A_i \cong A/H_i$ or $A_i \cong (A/H_i)^{\text{op}}$.

Acknowledgements

The first author has been supported by the Institute of Mathematics of the National Academy of Sciences of Belarus in the framework of the state program “Mathematical structures”. Both authors acknowledge a partial support of the the London Mathematical Society. The research was started during a visit of the first named author to the University of East Anglia. He thanks the faculty of the School of Mathematics of UEA for their hospitality.
References

