Researchers develop pioneering X-ray technique to analyse ancient artefacts

Posted by ap507 at Jun 29, 2017 01:16 PM |
Leicester leads international team to develop new method for conducting materials analysis on historical objects
Researchers develop pioneering X-ray technique to analyse ancient artefacts

Photographs of the fossil samples (a) oyster shell, (b) shark tooth, (c) brachiopod

A pioneering X-ray technique that can analyse artefacts of any shape or texture in a non-destructive way has been developed by an international team of researchers led by our University.

The technique, which has been showcased in a paper published in the journal Acta Crystallographica A, uses X-ray diffraction (XRD) in order to determine crystallographic phase information in artefacts with very high accuracy and without causing damage to the object being scanned.

Using the technique, researchers can identify pigments in paintings and on painted objects – which could potentially be applied in the future to help to clamp down on counterfeit artwork and artefacts and verify authenticity.

The research suggests that the non-invasive technique could also eliminate the frequent need to compromise between archaeological questions that can be solved and the analytical methods available to do so.

Dr Graeme Hansford, from the Department of Physics and Astronomy, explained: “The ability to do high-quality non-destructive XRD analysis of cultural heritage artefacts is very exciting for me and represents the culmination of several years of work.

“What makes this method really unique is that the shape and texture of the sample become immaterial. I expect future studies to make significant contributions to determining the provenance of a range of archaeological objects, and this data will ultimately provide vital context information for museum collections.

“In paintings, the type of pigment used frequently yields useful insights into methods of production and the organisation of ancient industries, as well as restricting the possible date of manufacture. This could help to determine if the provenance of an artefact is as purported.”

The research was supported by the UK’s Science and Technology Facilities Council.