John Bridges: Mars Science Laboratory Blog

This blog is a record of my experiences and work during the Mars Science Laboratory mission, from the preparation, landing on August 5th 2012 Pacific Time, and onwards...

In addition to the blog, you can find some amazing videos and other content related to the mission, at:

http://mars.jpl.nasa.gov/msl/multimedia/videos/index.cfm?v=49

John Bridges

22nd July 2014 Sol 696

22nd July 2014 Sol 696

Posted by jcb36 at Jul 22, 2014 06:00 PM |

Recently MastCam and ChemCam imaging revealed 2 iron meteorites along our traverse.  These are the first found by Curiosity, though the 2 MER, Spirit and Opportunity also identified iron meteorites.

The Curiosity ones: called Lebanon and Littleton were identified by their high reflectivity ('specular') compared to the other rocks, native to Gale Crater. They are < 1 m across. 

The freshness of the meteorite surfaces suggests that they have not been exposed to the water and salts that the mudstones and other sedimentary rocks experienced. 

An interesting puzzle is that we have only ever seen iron meteorites on Mars.  Stony meteorites are by far the the most common sort on Earth and were also identified on the lunar surface by Apollo 17.  Was there a recent break up of an iron meteorite parent body which led to a shower of meteorites on Mars or is it that the shiny surface enables us to identify iron metorites, but stony meteorites are more difficult?

The image below shows a ChemCam RMI image superimposed on a Mastcam image.  The pitted surface shows regmaglypts, which are caused by the passage of a meteorite through an atmosphere. The action of sand carried by the wind in reecnt times on the surface of Mars may have enhanced these features.

14th July 2014 Sol 688

14th July 2014 Sol 688

Posted by jcb36 at Jul 14, 2014 09:50 AM |

In addition to driving towards the Murray Buttes gap in the dunes, and our path onto Mt. Sharp, we stop sometimes to do contact science.  The image gives an example of what this entails.  We have to get the APXS detector head as close as possible to a target of interest (in this case one of the 'float' rocks scattered on the surface) so that the intensity of the X-rays given  off  by the sample after bombardment by the alpha paticles from APXS does not diminish.  In this image you can see how the robotic arm turret head has been rotated to bring the APXS clsoe to the target rock.

2nd July 2014  Sol 678

2nd July 2014 Sol 678

Posted by jcb36 at Jul 02, 2014 10:05 AM |

Here is a new classic image from Mars: a selfie from Kimberley.  You can see the dark drill hole and the practice drill hole beside it.  Curiosity itself is looking a bit dusty after a year's work on Mars.  Images like this always remind me how big the rover is in relation to many of the outcrops we are looking at.  Keeping track of the scale of rocks is always important.

As a result of all our driving - a total of about 8 km -  we have just passed across our the line of our original 20 km diameter landing ellipse.

Meanwhile at Terra Meridiani - site of the solar powered MER rover Opportunity, which landed in January 2004, has named a site at Endeavour Crater, Pillinger Point.  This is in honour of Colin Pillinger - the lead scientist behind the Beagle2 mission and a man who did much to push forward planetary science in the UK and Europe.

24th June 2014 Sol 669

24th June 2014 Sol 669

Posted by jcb36 at Jun 24, 2014 06:05 PM |

It is sol 669 and this equals 1 martian year since our landing in August 2012.  At the moment we are doing a lot of driving - frequently over 100 m per day in this phase of the mission.  It has been a remarkable mission, and although there is much to do we have already radically moved forward our understanding of Mars.  Before MSL, we thought there might have habitable lacustrine deposits but the reality is until we got right up close to make analyses with ChemCam, CheMin and all the other instruments we couldnt be sure because the Mars rocks usually have a dark oxidised surface, which from a distance masks the diagnostic textures.

My highlights so far include when the first MastCam images came down from Yellowknife Bay and the debates we had been having in the science team about igneous or sedimentary rocks were resolved: Mars had mudstones that formed in lakes, and was habitable.  But I think my favourite is the wonderful image of the Peace Vallis conglomerate, the rounded clasts showing that we had come across an ancient riverbed.

Here is a movie, made by William Rapin of the ChemCam team, based on  Navcam images, showing our progress over much of the mission. We have come a long way and hopefully will continue for many years to come.

https://www.youtube.com/watch?v=SirS4de9_LI&feature=youtu.be

Share this page: